Metamath Proof Explorer


Theorem uniioombllem3

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
uniioombl.m ( 𝜑𝑀 ∈ ℕ )
uniioombl.m2 ( 𝜑 → ( abs ‘ ( ( 𝑇𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 )
uniioombl.k 𝐾 = ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) )
Assertion uniioombllem3 ( 𝜑 → ( ( vol* ‘ ( 𝐸𝐴 ) ) + ( vol* ‘ ( 𝐸𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( 𝐾𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 uniioombl.1 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
2 uniioombl.2 ( 𝜑Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹𝑥 ) ) )
3 uniioombl.3 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
4 uniioombl.a 𝐴 = ran ( (,) ∘ 𝐹 )
5 uniioombl.e ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ )
6 uniioombl.c ( 𝜑𝐶 ∈ ℝ+ )
7 uniioombl.g ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
8 uniioombl.s ( 𝜑𝐸 ran ( (,) ∘ 𝐺 ) )
9 uniioombl.t 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
10 uniioombl.v ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) )
11 uniioombl.m ( 𝜑𝑀 ∈ ℕ )
12 uniioombl.m2 ( 𝜑 → ( abs ‘ ( ( 𝑇𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 )
13 uniioombl.k 𝐾 = ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) )
14 inss1 ( 𝐸𝐴 ) ⊆ 𝐸
15 14 a1i ( 𝜑 → ( 𝐸𝐴 ) ⊆ 𝐸 )
16 7 uniiccdif ( 𝜑 → ( ran ( (,) ∘ 𝐺 ) ⊆ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ran ( [,] ∘ 𝐺 ) ∖ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) )
17 16 simpld ( 𝜑 ran ( (,) ∘ 𝐺 ) ⊆ ran ( [,] ∘ 𝐺 ) )
18 ovolficcss ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran ( [,] ∘ 𝐺 ) ⊆ ℝ )
19 7 18 syl ( 𝜑 ran ( [,] ∘ 𝐺 ) ⊆ ℝ )
20 17 19 sstrd ( 𝜑 ran ( (,) ∘ 𝐺 ) ⊆ ℝ )
21 8 20 sstrd ( 𝜑𝐸 ⊆ ℝ )
22 ovolsscl ( ( ( 𝐸𝐴 ) ⊆ 𝐸𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸𝐴 ) ) ∈ ℝ )
23 15 21 5 22 syl3anc ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ∈ ℝ )
24 difssd ( 𝜑 → ( 𝐸𝐴 ) ⊆ 𝐸 )
25 ovolsscl ( ( ( 𝐸𝐴 ) ⊆ 𝐸𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸𝐴 ) ) ∈ ℝ )
26 24 21 5 25 syl3anc ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ∈ ℝ )
27 inss1 ( 𝐾𝐴 ) ⊆ 𝐾
28 27 a1i ( 𝜑 → ( 𝐾𝐴 ) ⊆ 𝐾 )
29 1 2 3 4 5 6 7 8 9 10 11 12 13 uniioombllem3a ( 𝜑 → ( 𝐾 = 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) )
30 29 simpld ( 𝜑𝐾 = 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) )
31 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
32 elfznn ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ )
33 ffvelrn ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( 𝐺𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
34 7 32 33 syl2an ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑗 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
35 31 34 sseldi ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑗 ) ∈ ( ℝ × ℝ ) )
36 1st2nd2 ( ( 𝐺𝑗 ) ∈ ( ℝ × ℝ ) → ( 𝐺𝑗 ) = ⟨ ( 1st ‘ ( 𝐺𝑗 ) ) , ( 2nd ‘ ( 𝐺𝑗 ) ) ⟩ )
37 35 36 syl ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝑗 ) = ⟨ ( 1st ‘ ( 𝐺𝑗 ) ) , ( 2nd ‘ ( 𝐺𝑗 ) ) ⟩ )
38 37 fveq2d ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺𝑗 ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐺𝑗 ) ) , ( 2nd ‘ ( 𝐺𝑗 ) ) ⟩ ) )
39 df-ov ( ( 1st ‘ ( 𝐺𝑗 ) ) (,) ( 2nd ‘ ( 𝐺𝑗 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐺𝑗 ) ) , ( 2nd ‘ ( 𝐺𝑗 ) ) ⟩ )
40 38 39 eqtr4di ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺𝑗 ) ) = ( ( 1st ‘ ( 𝐺𝑗 ) ) (,) ( 2nd ‘ ( 𝐺𝑗 ) ) ) )
41 ioossre ( ( 1st ‘ ( 𝐺𝑗 ) ) (,) ( 2nd ‘ ( 𝐺𝑗 ) ) ) ⊆ ℝ
42 40 41 eqsstrdi ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( (,) ‘ ( 𝐺𝑗 ) ) ⊆ ℝ )
43 42 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) ⊆ ℝ )
44 iunss ( 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) ⊆ ℝ ↔ ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) ⊆ ℝ )
45 43 44 sylibr ( 𝜑 𝑗 ∈ ( 1 ... 𝑀 ) ( (,) ‘ ( 𝐺𝑗 ) ) ⊆ ℝ )
46 30 45 eqsstrd ( 𝜑𝐾 ⊆ ℝ )
47 29 simprd ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ )
48 ovolsscl ( ( ( 𝐾𝐴 ) ⊆ 𝐾𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ )
49 28 46 47 48 syl3anc ( 𝜑 → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ )
50 6 rpred ( 𝜑𝐶 ∈ ℝ )
51 49 50 readdcld ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) ∈ ℝ )
52 difssd ( 𝜑 → ( 𝐾𝐴 ) ⊆ 𝐾 )
53 ovolsscl ( ( ( 𝐾𝐴 ) ⊆ 𝐾𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ )
54 52 46 47 53 syl3anc ( 𝜑 → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ )
55 54 50 readdcld ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) ∈ ℝ )
56 ssun2 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
57 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
58 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
59 31 58 sstri ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* )
60 fss ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) )
61 7 59 60 sylancl ( 𝜑𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) )
62 fco ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐺 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ )
63 57 61 62 sylancr ( 𝜑 → ( (,) ∘ 𝐺 ) : ℕ ⟶ 𝒫 ℝ )
64 63 ffnd ( 𝜑 → ( (,) ∘ 𝐺 ) Fn ℕ )
65 fnima ( ( (,) ∘ 𝐺 ) Fn ℕ → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) )
66 64 65 syl ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ran ( (,) ∘ 𝐺 ) )
67 nnuz ℕ = ( ℤ ‘ 1 )
68 11 peano2nnd ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ )
69 68 67 eleqtrdi ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ ‘ 1 ) )
70 uzsplit ( ( 𝑀 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ℤ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
71 69 70 syl ( 𝜑 → ( ℤ ‘ 1 ) = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
72 67 71 syl5eq ( 𝜑 → ℕ = ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
73 11 nncnd ( 𝜑𝑀 ∈ ℂ )
74 ax-1cn 1 ∈ ℂ
75 pncan ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 )
76 73 74 75 sylancl ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 )
77 76 oveq2d ( 𝜑 → ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 1 ... 𝑀 ) )
78 77 uneq1d ( 𝜑 → ( ( 1 ... ( ( 𝑀 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) = ( ( 1 ... 𝑀 ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
79 72 78 eqtrd ( 𝜑 → ℕ = ( ( 1 ... 𝑀 ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
80 79 imaeq2d ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ℕ ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
81 66 80 eqtr3d ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
82 imaundi ( ( (,) ∘ 𝐺 ) “ ( ( 1 ... 𝑀 ) ∪ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
83 81 82 eqtrdi ( 𝜑 → ran ( (,) ∘ 𝐺 ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
84 83 unieqd ( 𝜑 ran ( (,) ∘ 𝐺 ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
85 uniun ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
86 84 85 eqtrdi ( 𝜑 ran ( (,) ∘ 𝐺 ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
87 13 uneq1i ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) = ( ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
88 86 87 eqtr4di ( 𝜑 ran ( (,) ∘ 𝐺 ) = ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
89 56 88 sseqtrrid ( 𝜑 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) )
90 1 2 3 4 5 6 7 8 9 10 uniioombllem1 ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
91 ssid ran ( (,) ∘ 𝐺 ) ⊆ ran ( (,) ∘ 𝐺 )
92 9 ovollb ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ran ( (,) ∘ 𝐺 ) ⊆ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
93 7 91 92 sylancl ( 𝜑 → ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
94 ovollecl ( ( ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ )
95 20 90 93 94 syl3anc ( 𝜑 → ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ )
96 ovolsscl ( ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) ∧ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ )
97 89 20 95 96 syl3anc ( 𝜑 → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ )
98 49 97 readdcld ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
99 unss1 ( ( 𝐾𝐴 ) ⊆ 𝐾 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
100 27 99 ax-mp ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
101 100 88 sseqtrrid ( 𝜑 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) )
102 ovolsscl ( ( ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) ∧ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
103 101 20 95 102 syl3anc ( 𝜑 → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
104 8 88 sseqtrd ( 𝜑𝐸 ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
105 104 ssrind ( 𝜑 → ( 𝐸𝐴 ) ⊆ ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) )
106 indir ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) = ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) )
107 inss1 ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) )
108 unss2 ( ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ⊆ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
109 107 108 ax-mp ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∩ 𝐴 ) ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
110 106 109 eqsstri ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∩ 𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
111 105 110 sstrdi ( 𝜑 → ( 𝐸𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
112 101 20 sstrd ( 𝜑 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ )
113 ovolss ( ( ( 𝐸𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
114 111 112 113 syl2anc ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
115 28 46 sstrd ( 𝜑 → ( 𝐾𝐴 ) ⊆ ℝ )
116 89 20 sstrd ( 𝜑 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ )
117 ovolun ( ( ( ( 𝐾𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ ) ∧ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
118 115 49 116 97 117 syl22anc ( 𝜑 → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
119 23 103 98 114 118 letrd ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
120 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
121 eqid ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 )
122 121 9 ovolsf ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) )
123 7 122 syl ( 𝜑𝑇 : ℕ ⟶ ( 0 [,) +∞ ) )
124 123 11 ffvelrnd ( 𝜑 → ( 𝑇𝑀 ) ∈ ( 0 [,) +∞ ) )
125 120 124 sseldi ( 𝜑 → ( 𝑇𝑀 ) ∈ ℝ )
126 90 125 resubcld ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ∈ ℝ )
127 97 rexrd ( 𝜑 → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ* )
128 id ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ )
129 nnaddcl ( ( 𝑧 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ )
130 128 11 129 syl2anr ( ( 𝜑𝑧 ∈ ℕ ) → ( 𝑧 + 𝑀 ) ∈ ℕ )
131 7 ffvelrnda ( ( 𝜑 ∧ ( 𝑧 + 𝑀 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
132 130 131 syldan ( ( 𝜑𝑧 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
133 132 fmpttd ( 𝜑 → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
134 eqid ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
135 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) )
136 134 135 ovolsf ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
137 133 136 syl ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
138 137 frnd ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ( 0 [,) +∞ ) )
139 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
140 138 139 sstrdi ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* )
141 supxrcl ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* )
142 140 141 syl ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ∈ ℝ* )
143 126 rexrd ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ∈ ℝ* )
144 1zzd ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 1 ∈ ℤ )
145 11 nnzd ( 𝜑𝑀 ∈ ℤ )
146 145 adantr ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℤ )
147 addcom ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) )
148 73 74 147 sylancl ( 𝜑 → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) )
149 148 fveq2d ( 𝜑 → ( ℤ ‘ ( 𝑀 + 1 ) ) = ( ℤ ‘ ( 1 + 𝑀 ) ) )
150 149 eleq2d ( 𝜑 → ( 𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ↔ 𝑥 ∈ ( ℤ ‘ ( 1 + 𝑀 ) ) ) )
151 150 biimpa ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ( ℤ ‘ ( 1 + 𝑀 ) ) )
152 eluzsub ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ( ℤ ‘ ( 1 + 𝑀 ) ) ) → ( 𝑥𝑀 ) ∈ ( ℤ ‘ 1 ) )
153 144 146 151 152 syl3anc ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥𝑀 ) ∈ ( ℤ ‘ 1 ) )
154 153 67 eleqtrrdi ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑥𝑀 ) ∈ ℕ )
155 eluzelz ( 𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ℤ )
156 155 adantl ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℤ )
157 156 zcnd ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ℂ )
158 73 adantr ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 ∈ ℂ )
159 157 158 npcand ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑥𝑀 ) + 𝑀 ) = 𝑥 )
160 159 eqcomd ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 = ( ( 𝑥𝑀 ) + 𝑀 ) )
161 oveq1 ( 𝑧 = ( 𝑥𝑀 ) → ( 𝑧 + 𝑀 ) = ( ( 𝑥𝑀 ) + 𝑀 ) )
162 161 rspceeqv ( ( ( 𝑥𝑀 ) ∈ ℕ ∧ 𝑥 = ( ( 𝑥𝑀 ) + 𝑀 ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) )
163 154 160 162 syl2anc ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) )
164 eqid ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) )
165 164 elrnmpt ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) ) )
166 165 elv ( 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ↔ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑧 + 𝑀 ) )
167 163 166 sylibr ( ( 𝜑𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) )
168 167 ex ( 𝜑 → ( 𝑥 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → 𝑥 ∈ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) )
169 168 ssrdv ( 𝜑 → ( ℤ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) )
170 imass2 ( ( ℤ ‘ ( 𝑀 + 1 ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) → ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) )
171 169 170 syl ( 𝜑 → ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) )
172 rnco2 ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) )
173 7 130 cofmpt ( 𝜑 → ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
174 173 rneqd ( 𝜑 → ran ( 𝐺 ∘ ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
175 172 174 syl5eqr ( 𝜑 → ( 𝐺 “ ran ( 𝑧 ∈ ℕ ↦ ( 𝑧 + 𝑀 ) ) ) = ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
176 171 175 sseqtrd ( 𝜑 → ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
177 imass2 ( ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) → ( (,) “ ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) )
178 176 177 syl ( 𝜑 → ( (,) “ ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) )
179 imaco ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) = ( (,) “ ( 𝐺 “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
180 rnco2 ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) = ( (,) “ ran ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) )
181 178 179 180 3sstr4g ( 𝜑 → ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) )
182 181 unissd ( 𝜑 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) )
183 135 ovollb ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ran ( (,) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) )
184 133 182 183 syl2anc ( 𝜑 → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) )
185 123 frnd ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) )
186 185 139 sstrdi ( 𝜑 → ran 𝑇 ⊆ ℝ* )
187 9 fveq1i ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) )
188 11 nnred ( 𝜑𝑀 ∈ ℝ )
189 188 ltp1d ( 𝜑𝑀 < ( 𝑀 + 1 ) )
190 fzdisj ( 𝑀 < ( 𝑀 + 1 ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ )
191 189 190 syl ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ )
192 191 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1 ... 𝑀 ) ∩ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) = ∅ )
193 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
194 nn0addge1 ( ( 𝑀 ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) )
195 188 193 194 syl2an ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ≤ ( 𝑀 + 𝑛 ) )
196 11 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ )
197 196 67 eleqtrdi ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ( ℤ ‘ 1 ) )
198 nnaddcl ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ )
199 11 198 sylan ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℕ )
200 199 nnzd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ℤ )
201 elfz5 ( ( 𝑀 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑀 + 𝑛 ) ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) )
202 197 200 201 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ↔ 𝑀 ≤ ( 𝑀 + 𝑛 ) ) )
203 195 202 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) )
204 fzsplit ( 𝑀 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) )
205 203 204 syl ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) = ( ( 1 ... 𝑀 ) ∪ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) )
206 fzfid ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... ( 𝑀 + 𝑛 ) ) ∈ Fin )
207 7 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
208 elfznn ( 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ℕ )
209 ovolfcl ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺𝑗 ) ) ) )
210 207 208 209 syl2an ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺𝑗 ) ) ) )
211 210 simp2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
212 210 simp1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
213 211 212 resubcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℝ )
214 213 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℂ )
215 192 205 206 214 fsumsplit ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ) )
216 121 ovolfsval ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) )
217 207 208 216 syl2an ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) )
218 199 67 eleqtrdi ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 + 𝑛 ) ∈ ( ℤ ‘ 1 ) )
219 217 218 214 fsumser ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) )
220 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
221 32 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℕ )
222 220 221 216 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑗 ) = ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) )
223 7 32 209 syl2an ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺𝑗 ) ) ) )
224 223 simp2d ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
225 223 simp1d ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
226 224 225 resubcld ( ( 𝜑𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℝ )
227 226 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℝ )
228 227 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℂ )
229 222 197 228 fsumser ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 ) )
230 9 fveq1i ( 𝑇𝑀 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑀 )
231 229 230 eqtr4di ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( 𝑇𝑀 ) )
232 196 nnzd ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ℤ )
233 232 peano2zd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℤ )
234 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
235 196 peano2nnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 + 1 ) ∈ ℕ )
236 elfzuz ( 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) → 𝑗 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
237 eluznn ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ ℕ )
238 235 236 237 syl2an ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → 𝑗 ∈ ℕ )
239 234 238 209 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺𝑗 ) ) ≤ ( 2nd ‘ ( 𝐺𝑗 ) ) ) )
240 239 simp2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 2nd ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
241 239 simp1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( 1st ‘ ( 𝐺𝑗 ) ) ∈ ℝ )
242 240 241 resubcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℝ )
243 242 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ∈ ℂ )
244 2fveq3 ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 2nd ‘ ( 𝐺𝑗 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) )
245 2fveq3 ( 𝑗 = ( 𝑘 + 𝑀 ) → ( 1st ‘ ( 𝐺𝑗 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) )
246 244 245 oveq12d ( 𝑗 = ( 𝑘 + 𝑀 ) → ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
247 232 233 200 243 246 fsumshftm ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
248 196 nncnd ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ℂ )
249 pncan2 ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 )
250 248 74 249 sylancl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 + 1 ) − 𝑀 ) = 1 )
251 nncn ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ )
252 251 adantl ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ )
253 248 252 pncan2d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑀 + 𝑛 ) − 𝑀 ) = 𝑛 )
254 250 253 oveq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) = ( 1 ... 𝑛 ) )
255 254 sumeq1d ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( ( ( 𝑀 + 1 ) − 𝑀 ) ... ( ( 𝑀 + 𝑛 ) − 𝑀 ) ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
256 133 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
257 elfznn ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ )
258 134 ovolfsval ( ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) )
259 256 257 258 syl2an ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) )
260 257 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
261 fvoveq1 ( 𝑧 = 𝑘 → ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) )
262 eqid ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) )
263 fvex ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ∈ V
264 261 262 263 fvmpt ( 𝑘 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) )
265 260 264 syl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) )
266 265 fveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) )
267 265 fveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) )
268 266 267 oveq12d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) − ( 1st ‘ ( ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ‘ 𝑘 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
269 259 268 eqtrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
270 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
271 270 67 eleqtrdi ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ ‘ 1 ) )
272 7 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
273 nnaddcl ( ( 𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑘 + 𝑀 ) ∈ ℕ )
274 257 196 273 syl2anr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝑘 + 𝑀 ) ∈ ℕ )
275 ovolfcl ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 𝑀 ) ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
276 272 274 275 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) )
277 276 simp2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ )
278 276 simp1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ∈ ℝ )
279 277 278 resubcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℝ )
280 279 recnd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) ∈ ℂ )
281 269 271 280 fsumser ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 𝑀 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) )
282 247 255 281 3eqtrd ( ( 𝜑𝑛 ∈ ℕ ) → Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) )
283 231 282 oveq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( Σ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) + Σ 𝑗 ∈ ( ( 𝑀 + 1 ) ... ( 𝑀 + 𝑛 ) ) ( ( 2nd ‘ ( 𝐺𝑗 ) ) − ( 1st ‘ ( 𝐺𝑗 ) ) ) ) = ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) )
284 215 219 283 3eqtr3d ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) )
285 187 284 syl5eq ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) = ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) )
286 123 ffnd ( 𝜑𝑇 Fn ℕ )
287 fnfvelrn ( ( 𝑇 Fn ℕ ∧ ( 𝑀 + 𝑛 ) ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 )
288 286 199 287 syl2an2r ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑀 + 𝑛 ) ) ∈ ran 𝑇 )
289 285 288 eqeltrrd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 )
290 supxrub ( ( ran 𝑇 ⊆ ℝ* ∧ ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ∈ ran 𝑇 ) → ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
291 186 289 290 syl2an2r ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
292 125 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑇𝑀 ) ∈ ℝ )
293 137 ffvelrnda ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) )
294 120 293 sseldi ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ∈ ℝ )
295 90 adantr ( ( 𝜑𝑛 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
296 292 294 295 leaddsub2d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 𝑇𝑀 ) + ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
297 291 296 mpbid ( ( 𝜑𝑛 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) )
298 297 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) )
299 137 ffnd ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ )
300 breq1 ( 𝑥 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) → ( 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
301 300 ralrn ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) Fn ℕ → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
302 299 301 syl ( 𝜑 → ( ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ↔ ∀ 𝑛 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ‘ 𝑛 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
303 298 302 mpbird ( 𝜑 → ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) )
304 supxrleub ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) ⊆ ℝ* ∧ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
305 140 143 304 syl2anc ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ↔ ∀ 𝑥 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) 𝑥 ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) ) )
306 303 305 mpbird ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑧 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑧 + 𝑀 ) ) ) ) ) , ℝ* , < ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) )
307 127 142 143 184 306 xrletrd ( 𝜑 → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) )
308 125 90 50 absdifltd ( 𝜑 → ( ( abs ‘ ( ( 𝑇𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ↔ ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇𝑀 ) ∧ ( 𝑇𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) ) )
309 12 308 mpbid ( 𝜑 → ( ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇𝑀 ) ∧ ( 𝑇𝑀 ) < ( sup ( ran 𝑇 , ℝ* , < ) + 𝐶 ) ) )
310 309 simpld ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − 𝐶 ) < ( 𝑇𝑀 ) )
311 90 50 125 310 ltsub23d ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) − ( 𝑇𝑀 ) ) < 𝐶 )
312 97 126 50 307 311 lelttrd ( 𝜑 → ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) < 𝐶 )
313 97 50 49 312 ltadd2dd ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) )
314 23 98 51 119 313 lelttrd ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) < ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) )
315 54 97 readdcld ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
316 difss ( 𝐾𝐴 ) ⊆ 𝐾
317 unss1 ( ( 𝐾𝐴 ) ⊆ 𝐾 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
318 316 317 ax-mp ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
319 318 88 sseqtrrid ( 𝜑 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) )
320 ovolsscl ( ( ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ran ( (,) ∘ 𝐺 ) ∧ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
321 319 20 95 320 syl3anc ( 𝜑 → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ∈ ℝ )
322 104 ssdifd ( 𝜑 → ( 𝐸𝐴 ) ⊆ ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) )
323 difundir ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) = ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) )
324 difss ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) )
325 unss2 ( ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ⊆ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
326 324 325 ax-mp ( ( 𝐾𝐴 ) ∪ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ∖ 𝐴 ) ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
327 323 326 eqsstri ( ( 𝐾 ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∖ 𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
328 322 327 sstrdi ( 𝜑 → ( 𝐸𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) )
329 319 20 sstrd ( 𝜑 → ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ )
330 ovolss ( ( ( 𝐸𝐴 ) ⊆ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
331 328 329 330 syl2anc ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
332 52 46 sstrd ( 𝜑 → ( 𝐾𝐴 ) ⊆ ℝ )
333 ovolun ( ( ( ( 𝐾𝐴 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℝ ) ∧ ( ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ⊆ ℝ ∧ ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
334 332 54 116 97 333 syl22anc ( 𝜑 → ( vol* ‘ ( ( 𝐾𝐴 ) ∪ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
335 26 321 315 331 334 letrd ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) )
336 97 50 54 312 ltadd2dd ( 𝜑 → ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( ( (,) ∘ 𝐺 ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) ) ) < ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) )
337 26 315 55 335 336 lelttrd ( 𝜑 → ( vol* ‘ ( 𝐸𝐴 ) ) < ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) )
338 23 26 51 55 314 337 lt2addd ( 𝜑 → ( ( vol* ‘ ( 𝐸𝐴 ) ) + ( vol* ‘ ( 𝐸𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) ) )
339 49 recnd ( 𝜑 → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℂ )
340 50 recnd ( 𝜑𝐶 ∈ ℂ )
341 54 recnd ( 𝜑 → ( vol* ‘ ( 𝐾𝐴 ) ) ∈ ℂ )
342 339 340 341 340 add4d ( 𝜑 → ( ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) + ( ( vol* ‘ ( 𝐾𝐴 ) ) + 𝐶 ) ) = ( ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( 𝐾𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) )
343 338 342 breqtrd ( 𝜑 → ( ( vol* ‘ ( 𝐸𝐴 ) ) + ( vol* ‘ ( 𝐸𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾𝐴 ) ) + ( vol* ‘ ( 𝐾𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) )