Metamath Proof Explorer


Theorem ovolfsval

Description: The value of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis ovolfs.1 𝐺 = ( ( abs ∘ − ) ∘ 𝐹 )
Assertion ovolfsval ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐺𝑁 ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 ovolfs.1 𝐺 = ( ( abs ∘ − ) ∘ 𝐹 )
2 1 fveq1i ( 𝐺𝑁 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑁 )
3 fvco3 ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑁 ) = ( ( abs ∘ − ) ‘ ( 𝐹𝑁 ) ) )
4 2 3 eqtrid ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐺𝑁 ) = ( ( abs ∘ − ) ‘ ( 𝐹𝑁 ) ) )
5 ffvelrn ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐹𝑁 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
6 5 elin2d ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐹𝑁 ) ∈ ( ℝ × ℝ ) )
7 1st2nd2 ( ( 𝐹𝑁 ) ∈ ( ℝ × ℝ ) → ( 𝐹𝑁 ) = ⟨ ( 1st ‘ ( 𝐹𝑁 ) ) , ( 2nd ‘ ( 𝐹𝑁 ) ) ⟩ )
8 6 7 syl ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐹𝑁 ) = ⟨ ( 1st ‘ ( 𝐹𝑁 ) ) , ( 2nd ‘ ( 𝐹𝑁 ) ) ⟩ )
9 8 fveq2d ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( abs ∘ − ) ‘ ( 𝐹𝑁 ) ) = ( ( abs ∘ − ) ‘ ⟨ ( 1st ‘ ( 𝐹𝑁 ) ) , ( 2nd ‘ ( 𝐹𝑁 ) ) ⟩ ) )
10 df-ov ( ( 1st ‘ ( 𝐹𝑁 ) ) ( abs ∘ − ) ( 2nd ‘ ( 𝐹𝑁 ) ) ) = ( ( abs ∘ − ) ‘ ⟨ ( 1st ‘ ( 𝐹𝑁 ) ) , ( 2nd ‘ ( 𝐹𝑁 ) ) ⟩ )
11 9 10 eqtr4di ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( abs ∘ − ) ‘ ( 𝐹𝑁 ) ) = ( ( 1st ‘ ( 𝐹𝑁 ) ) ( abs ∘ − ) ( 2nd ‘ ( 𝐹𝑁 ) ) ) )
12 ovolfcl ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑁 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑁 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑁 ) ) ≤ ( 2nd ‘ ( 𝐹𝑁 ) ) ) )
13 12 simp1d ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑁 ) ) ∈ ℝ )
14 13 recnd ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑁 ) ) ∈ ℂ )
15 12 simp2d ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑁 ) ) ∈ ℝ )
16 15 recnd ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑁 ) ) ∈ ℂ )
17 eqid ( abs ∘ − ) = ( abs ∘ − )
18 17 cnmetdval ( ( ( 1st ‘ ( 𝐹𝑁 ) ) ∈ ℂ ∧ ( 2nd ‘ ( 𝐹𝑁 ) ) ∈ ℂ ) → ( ( 1st ‘ ( 𝐹𝑁 ) ) ( abs ∘ − ) ( 2nd ‘ ( 𝐹𝑁 ) ) ) = ( abs ‘ ( ( 1st ‘ ( 𝐹𝑁 ) ) − ( 2nd ‘ ( 𝐹𝑁 ) ) ) ) )
19 14 16 18 syl2anc ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑁 ) ) ( abs ∘ − ) ( 2nd ‘ ( 𝐹𝑁 ) ) ) = ( abs ‘ ( ( 1st ‘ ( 𝐹𝑁 ) ) − ( 2nd ‘ ( 𝐹𝑁 ) ) ) ) )
20 abssuble0 ( ( ( 1st ‘ ( 𝐹𝑁 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑁 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑁 ) ) ≤ ( 2nd ‘ ( 𝐹𝑁 ) ) ) → ( abs ‘ ( ( 1st ‘ ( 𝐹𝑁 ) ) − ( 2nd ‘ ( 𝐹𝑁 ) ) ) ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )
21 12 20 syl ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( abs ‘ ( ( 1st ‘ ( 𝐹𝑁 ) ) − ( 2nd ‘ ( 𝐹𝑁 ) ) ) ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )
22 19 21 eqtrd ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑁 ) ) ( abs ∘ − ) ( 2nd ‘ ( 𝐹𝑁 ) ) ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )
23 11 22 eqtrd ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( ( abs ∘ − ) ‘ ( 𝐹𝑁 ) ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )
24 4 23 eqtrd ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑁 ∈ ℕ ) → ( 𝐺𝑁 ) = ( ( 2nd ‘ ( 𝐹𝑁 ) ) − ( 1st ‘ ( 𝐹𝑁 ) ) ) )