| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopbas |
⊢ ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases |
| 2 |
|
eltg3 |
⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases → ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) ↔ ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) ) |
| 4 |
|
uniiun |
⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 |
| 5 |
|
ssdomg |
⊢ ( ( (,) “ ( ℚ × ℚ ) ) ∈ TopBases → ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ) ) |
| 6 |
1 5
|
ax-mp |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ) |
| 7 |
|
omelon |
⊢ ω ∈ On |
| 8 |
|
qnnen |
⊢ ℚ ≈ ℕ |
| 9 |
|
xpen |
⊢ ( ( ℚ ≈ ℕ ∧ ℚ ≈ ℕ ) → ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) ) |
| 10 |
8 8 9
|
mp2an |
⊢ ( ℚ × ℚ ) ≈ ( ℕ × ℕ ) |
| 11 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
| 12 |
10 11
|
entri |
⊢ ( ℚ × ℚ ) ≈ ℕ |
| 13 |
|
nnenom |
⊢ ℕ ≈ ω |
| 14 |
12 13
|
entr2i |
⊢ ω ≈ ( ℚ × ℚ ) |
| 15 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ( ℚ × ℚ ) ) → ( ℚ × ℚ ) ∈ dom card ) |
| 16 |
7 14 15
|
mp2an |
⊢ ( ℚ × ℚ ) ∈ dom card |
| 17 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 18 |
|
ffun |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → Fun (,) ) |
| 19 |
17 18
|
ax-mp |
⊢ Fun (,) |
| 20 |
|
qssre |
⊢ ℚ ⊆ ℝ |
| 21 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 22 |
20 21
|
sstri |
⊢ ℚ ⊆ ℝ* |
| 23 |
|
xpss12 |
⊢ ( ( ℚ ⊆ ℝ* ∧ ℚ ⊆ ℝ* ) → ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) ) |
| 24 |
22 22 23
|
mp2an |
⊢ ( ℚ × ℚ ) ⊆ ( ℝ* × ℝ* ) |
| 25 |
17
|
fdmi |
⊢ dom (,) = ( ℝ* × ℝ* ) |
| 26 |
24 25
|
sseqtrri |
⊢ ( ℚ × ℚ ) ⊆ dom (,) |
| 27 |
|
fores |
⊢ ( ( Fun (,) ∧ ( ℚ × ℚ ) ⊆ dom (,) ) → ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) ) |
| 28 |
19 26 27
|
mp2an |
⊢ ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) |
| 29 |
|
fodomnum |
⊢ ( ( ℚ × ℚ ) ∈ dom card → ( ( (,) ↾ ( ℚ × ℚ ) ) : ( ℚ × ℚ ) –onto→ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ) ) |
| 30 |
16 28 29
|
mp2 |
⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) |
| 31 |
|
domentr |
⊢ ( ( ( (,) “ ( ℚ × ℚ ) ) ≼ ( ℚ × ℚ ) ∧ ( ℚ × ℚ ) ≈ ℕ ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ ) |
| 32 |
30 12 31
|
mp2an |
⊢ ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ |
| 33 |
|
domtr |
⊢ ( ( 𝑥 ≼ ( (,) “ ( ℚ × ℚ ) ) ∧ ( (,) “ ( ℚ × ℚ ) ) ≼ ℕ ) → 𝑥 ≼ ℕ ) |
| 34 |
6 32 33
|
sylancl |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ≼ ℕ ) |
| 35 |
|
imassrn |
⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ ran (,) |
| 36 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 37 |
17 36
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 38 |
|
ioombl |
⊢ ( 𝑥 (,) 𝑦 ) ∈ dom vol |
| 39 |
38
|
rgen2w |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ dom vol |
| 40 |
|
ffnov |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol ↔ ( (,) Fn ( ℝ* × ℝ* ) ∧ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* ( 𝑥 (,) 𝑦 ) ∈ dom vol ) ) |
| 41 |
37 39 40
|
mpbir2an |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ dom vol |
| 42 |
|
frn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ dom vol → ran (,) ⊆ dom vol ) |
| 43 |
41 42
|
ax-mp |
⊢ ran (,) ⊆ dom vol |
| 44 |
35 43
|
sstri |
⊢ ( (,) “ ( ℚ × ℚ ) ) ⊆ dom vol |
| 45 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ ( (,) “ ( ℚ × ℚ ) ) ⊆ dom vol ) → 𝑥 ⊆ dom vol ) |
| 46 |
44 45
|
mpan2 |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑥 ⊆ dom vol ) |
| 47 |
|
dfss3 |
⊢ ( 𝑥 ⊆ dom vol ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 48 |
46 47
|
sylib |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 49 |
|
iunmbl2 |
⊢ ( ( 𝑥 ≼ ℕ ∧ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 50 |
34 48 49
|
syl2anc |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol ) |
| 51 |
4 50
|
eqeltrid |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ∪ 𝑥 ∈ dom vol ) |
| 52 |
|
eleq1 |
⊢ ( 𝐴 = ∪ 𝑥 → ( 𝐴 ∈ dom vol ↔ ∪ 𝑥 ∈ dom vol ) ) |
| 53 |
51 52
|
syl5ibrcom |
⊢ ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ( 𝐴 = ∪ 𝑥 → 𝐴 ∈ dom vol ) ) |
| 54 |
53
|
imp |
⊢ ( ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ dom vol ) |
| 55 |
54
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐴 = ∪ 𝑥 ) → 𝐴 ∈ dom vol ) |
| 56 |
3 55
|
sylbi |
⊢ ( 𝐴 ∈ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) → 𝐴 ∈ dom vol ) |
| 57 |
|
eqid |
⊢ ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
| 58 |
57
|
tgqioo |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ( (,) “ ( ℚ × ℚ ) ) ) |
| 59 |
56 58
|
eleq2s |
⊢ ( 𝐴 ∈ ( topGen ‘ ran (,) ) → 𝐴 ∈ dom vol ) |