| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subopnmbl.1 |
⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
| 2 |
1
|
eleq2i |
⊢ ( 𝐵 ∈ 𝐽 ↔ 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 3 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 4 |
|
elrest |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ∈ dom vol ) → ( 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 6 |
2 5
|
bitrid |
⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ 𝐽 ↔ ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) ) ) |
| 7 |
|
opnmbl |
⊢ ( 𝑥 ∈ ( topGen ‘ ran (,) ) → 𝑥 ∈ dom vol ) |
| 8 |
|
id |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) |
| 9 |
|
inmbl |
⊢ ( ( 𝑥 ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) |
| 10 |
7 8 9
|
syl2anr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( 𝑥 ∩ 𝐴 ) ∈ dom vol ) |
| 11 |
|
eleq1a |
⊢ ( ( 𝑥 ∩ 𝐴 ) ∈ dom vol → ( 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) |
| 13 |
12
|
rexlimdva |
⊢ ( 𝐴 ∈ dom vol → ( ∃ 𝑥 ∈ ( topGen ‘ ran (,) ) 𝐵 = ( 𝑥 ∩ 𝐴 ) → 𝐵 ∈ dom vol ) ) |
| 14 |
6 13
|
sylbid |
⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ 𝐽 → 𝐵 ∈ dom vol ) ) |
| 15 |
14
|
imp |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽 ) → 𝐵 ∈ dom vol ) |