Description: Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subopnmbl.1 | |
|
Assertion | subopnmbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subopnmbl.1 | |
|
2 | 1 | eleq2i | |
3 | retop | |
|
4 | elrest | |
|
5 | 3 4 | mpan | |
6 | 2 5 | bitrid | |
7 | opnmbl | |
|
8 | id | |
|
9 | inmbl | |
|
10 | 7 8 9 | syl2anr | |
11 | eleq1a | |
|
12 | 10 11 | syl | |
13 | 12 | rexlimdva | |
14 | 6 13 | sylbid | |
15 | 14 | imp | |