| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opprnzr.1 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
1
|
opprringb |
⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |
| 3 |
2
|
anbi1i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑂 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 6 |
4 5
|
isnzr |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 7 |
1 4
|
oppr1 |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
| 8 |
1 5
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
| 9 |
7 8
|
isnzr |
⊢ ( 𝑂 ∈ NzRing ↔ ( 𝑂 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 10 |
3 6 9
|
3bitr4i |
⊢ ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing ) |