Metamath Proof Explorer


Theorem optoclOLD

Description: Obsolete version of optocl as of 29-Dec-2025. (Contributed by NM, 5-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses optocl.1 𝐷 = ( 𝐵 × 𝐶 )
optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
optocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
Assertion optoclOLD ( 𝐴𝐷𝜓 )

Proof

Step Hyp Ref Expression
1 optocl.1 𝐷 = ( 𝐵 × 𝐶 )
2 optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
3 optocl.3 ( ( 𝑥𝐵𝑦𝐶 ) → 𝜑 )
4 elxp3 ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) ) )
5 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) ↔ ( 𝑥𝐵𝑦𝐶 ) )
6 5 3 sylbi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) → 𝜑 )
7 6 2 imbitrid ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) → 𝜓 ) )
8 7 imp ( ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) ) → 𝜓 )
9 8 exlimivv ( ∃ 𝑥𝑦 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐵 × 𝐶 ) ) → 𝜓 )
10 4 9 sylbi ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → 𝜓 )
11 10 1 eleq2s ( 𝐴𝐷𝜓 )