| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordttopon.3 |
⊢ 𝑋 = dom 𝑅 |
| 2 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 3 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 4 |
1 2 3
|
ordtval |
⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 5 |
|
fibas |
⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ∈ TopBases |
| 6 |
|
tgtopon |
⊢ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 8 |
4 7
|
eqeltrdi |
⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 9 |
1 2 3
|
ordtuni |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) |
| 10 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
| 11 |
1 10
|
eqeltrid |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 ∈ V ) |
| 12 |
9 11
|
eqeltrrd |
⊢ ( 𝑅 ∈ 𝑉 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) |
| 13 |
|
uniexb |
⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝑅 ∈ 𝑉 → ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) |
| 15 |
|
fiuni |
⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 17 |
9 16
|
eqtrd |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 18 |
17
|
fveq2d |
⊢ ( 𝑅 ∈ 𝑉 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 19 |
8 18
|
eleqtrrd |
⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |