| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osum.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
osum.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 |
2 4
|
chub2i |
⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 6 |
3 5
|
sstri |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 7 |
1 2
|
chdmm3i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 8 |
6 7
|
sseqtrri |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 10 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 11 |
1 10
|
chincli |
⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 12 |
9 11
|
osumi |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) +ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 13 |
8 12
|
ax-mp |
⊢ ( ( 𝐴 ∩ 𝐵 ) +ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |