| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osum.1 |
|- A e. CH |
| 2 |
|
osum.2 |
|- B e. CH |
| 3 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 4 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 5 |
2 4
|
chub2i |
|- B C_ ( ( _|_ ` A ) vH B ) |
| 6 |
3 5
|
sstri |
|- ( A i^i B ) C_ ( ( _|_ ` A ) vH B ) |
| 7 |
1 2
|
chdmm3i |
|- ( _|_ ` ( A i^i ( _|_ ` B ) ) ) = ( ( _|_ ` A ) vH B ) |
| 8 |
6 7
|
sseqtrri |
|- ( A i^i B ) C_ ( _|_ ` ( A i^i ( _|_ ` B ) ) ) |
| 9 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 10 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 11 |
1 10
|
chincli |
|- ( A i^i ( _|_ ` B ) ) e. CH |
| 12 |
9 11
|
osumi |
|- ( ( A i^i B ) C_ ( _|_ ` ( A i^i ( _|_ ` B ) ) ) -> ( ( A i^i B ) +H ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 13 |
8 12
|
ax-mp |
|- ( ( A i^i B ) +H ( A i^i ( _|_ ` B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) |