Metamath Proof Explorer


Theorem pell14qrrp

Description: A positive Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion pell14qrrp ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
2 pell14qrgt0 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝐴 )
3 1 2 elrpd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ+ )