| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1234qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 |  | simp-4r | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ∈  ℕ0 )  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝑐  =  𝑎  →  ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ↔  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 8 | 4 7 | anbi12d | ⊢ ( 𝑐  =  𝑎  →  ( ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 9 | 8 | rexbidv | ⊢ ( 𝑐  =  𝑎  →  ( ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 10 | 9 | rspcev | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 11 | 10 | adantll | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ∈  ℕ0 )  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 12 |  | elpell14qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 13 | 12 | ad4antr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ∈  ℕ0 )  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 14 | 2 11 13 | mpbir2and | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ∈  ℕ0 )  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 15 | 14 | orcd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ∈  ℕ0 )  ∧  ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 16 | 15 | exp31 | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  ∈  ℕ0  →  ( ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) ) | 
						
							| 17 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 18 | 17 | renegcld | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝐴  ∈  ℝ ) | 
						
							| 19 |  | simpllr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝑎  ∈  ℕ0 ) | 
						
							| 20 |  | znegcl | ⊢ ( 𝑏  ∈  ℤ  →  - 𝑏  ∈  ℤ ) | 
						
							| 21 | 20 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝑏  ∈  ℤ ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 23 | 22 | negeqd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝐴  =  - ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 24 |  | zcn | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℂ ) | 
						
							| 25 | 24 | ad4antlr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑎  ∈  ℂ ) | 
						
							| 26 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 27 | 26 | nncnd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℂ ) | 
						
							| 28 | 27 | ad5antr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 29 | 28 | sqrtcld | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 30 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑏  ∈  ℂ ) | 
						
							| 32 | 29 31 | mulcld | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 33 | 25 32 | negdid | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( - 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 34 |  | mulneg2 | ⊢ ( ( ( √ ‘ 𝐷 )  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  ( ( √ ‘ 𝐷 )  ·  - 𝑏 )  =  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) | 
						
							| 35 | 34 | eqcomd | ⊢ ( ( ( √ ‘ 𝐷 )  ∈  ℂ  ∧  𝑏  ∈  ℂ )  →  - ( ( √ ‘ 𝐷 )  ·  𝑏 )  =  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) | 
						
							| 36 | 29 31 35 | syl2anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - ( ( √ ‘ 𝐷 )  ·  𝑏 )  =  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 38 | 23 33 37 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 39 |  | sqneg | ⊢ ( 𝑎  ∈  ℂ  →  ( - 𝑎 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 40 | 25 39 | syl | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑎 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 41 |  | sqneg | ⊢ ( 𝑏  ∈  ℂ  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 42 | 31 41 | syl | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 44 | 40 43 | oveq12d | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 45 |  | simprr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 46 | 44 45 | eqtrd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑐  =  - 𝑎  →  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑐  =  - 𝑎  →  ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ↔  - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) ) ) ) | 
						
							| 49 |  | oveq1 | ⊢ ( 𝑐  =  - 𝑎  →  ( 𝑐 ↑ 2 )  =  ( - 𝑎 ↑ 2 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝑐  =  - 𝑎  →  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( 𝑐  =  - 𝑎  →  ( ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  ↔  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 52 | 48 51 | anbi12d | ⊢ ( 𝑐  =  - 𝑎  →  ( ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  ↔  ( - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 53 |  | oveq2 | ⊢ ( 𝑑  =  - 𝑏  →  ( ( √ ‘ 𝐷 )  ·  𝑑 )  =  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 55 | 54 | eqeq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ↔  - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 56 |  | oveq1 | ⊢ ( 𝑑  =  - 𝑏  →  ( 𝑑 ↑ 2 )  =  ( - 𝑏 ↑ 2 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( 𝐷  ·  ( 𝑑 ↑ 2 ) )  =  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1  ↔  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 60 | 55 59 | anbi12d | ⊢ ( 𝑑  =  - 𝑏  →  ( ( - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 )  ↔  ( - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 61 | 52 60 | rspc2ev | ⊢ ( ( - 𝑎  ∈  ℕ0  ∧  - 𝑏  ∈  ℤ  ∧  ( - 𝐴  =  ( - 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( - 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℤ ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 62 | 19 21 38 46 61 | syl112anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℤ ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 63 |  | elpell14qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( - 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( - 𝐴  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℤ ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 64 | 63 | ad5antr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( - 𝐴  ∈  ℝ  ∧  ∃ 𝑐  ∈  ℕ0 ∃ 𝑑  ∈  ℤ ( - 𝐴  =  ( 𝑐  +  ( ( √ ‘ 𝐷 )  ·  𝑑 ) )  ∧  ( ( 𝑐 ↑ 2 )  −  ( 𝐷  ·  ( 𝑑 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 65 | 18 62 64 | mpbir2and | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 66 | 65 | olcd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 67 | 66 | ex | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  ∧  𝑏  ∈  ℤ )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 68 | 67 | rexlimdva | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  ∧  - 𝑎  ∈  ℕ0 )  →  ( ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 69 | 68 | ex | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  →  ( - 𝑎  ∈  ℕ0  →  ( ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) ) | 
						
							| 70 |  | elznn0 | ⊢ ( 𝑎  ∈  ℤ  ↔  ( 𝑎  ∈  ℝ  ∧  ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 ) ) ) | 
						
							| 71 | 70 | simprbi | ⊢ ( 𝑎  ∈  ℤ  →  ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 73 | 16 69 72 | mpjaod | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  𝑎  ∈  ℤ )  →  ( ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 74 | 73 | rexlimdva | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 75 | 74 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 76 | 1 75 | sylbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) |