| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pell14qrss1234 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ( Pell1234QR ‘ 𝐷 ) ) |
| 2 |
1
|
sselda |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) |
| 3 |
|
pell14qrgt0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝐴 ) |
| 4 |
2 3
|
jca |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
pell1234qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
| 7 |
|
ltnsym |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
| 8 |
5 6 7
|
sylancr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
| 9 |
8
|
impr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ¬ 𝐴 < 0 ) |
| 10 |
6
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 11 |
10
|
lt0neg1d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 12 |
9 11
|
mtbid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ¬ 0 < - 𝐴 ) |
| 13 |
|
pell14qrgt0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < - 𝐴 ) |
| 14 |
13
|
ex |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → 0 < - 𝐴 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → 0 < - 𝐴 ) ) |
| 16 |
12 15
|
mtod |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ¬ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 17 |
|
pell1234qrdich |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∨ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
| 18 |
17
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∨ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
| 19 |
|
orel2 |
⊢ ( ¬ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → ( ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∨ - 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
| 20 |
16 18 19
|
sylc |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 21 |
4 20
|
impbida |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ( Pell1234QR ‘ 𝐷 ) ∧ 0 < 𝐴 ) ) ) |