| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell14qrss1234 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell14QR ‘ 𝐷 )  ⊆  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 2 | 1 | sselda | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 3 |  | pell14qrgt0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  <  𝐴 ) | 
						
							| 4 | 2 3 | jca | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) ) | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 |  | pell1234qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | ltnsym | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  <  𝐴  →  ¬  𝐴  <  0 ) ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 0  <  𝐴  →  ¬  𝐴  <  0 ) ) | 
						
							| 9 | 8 | impr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ¬  𝐴  <  0 ) | 
						
							| 10 | 6 | adantrr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 11 | 10 | lt0neg1d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 12 | 9 11 | mtbid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ¬  0  <  - 𝐴 ) | 
						
							| 13 |  | pell14qrgt0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  <  - 𝐴 ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( - 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  0  <  - 𝐴 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ( - 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  0  <  - 𝐴 ) ) | 
						
							| 16 | 12 15 | mtod | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ¬  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 17 |  | pell1234qrdich | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 18 | 17 | adantrr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 19 |  | orel2 | ⊢ ( ¬  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  ( ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∨  - 𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 20 | 16 18 19 | sylc | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 21 | 4 20 | impbida | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) ) ) |