Metamath Proof Explorer


Theorem pell14qrss1234

Description: A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrss1234 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ( Pell1234QR ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ )
2 1 a1i ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ ) )
3 2 anim1d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ℕ0 ∧ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℤ ∧ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
4 3 reximdv2 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑏 ∈ ℕ0𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) → ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) )
5 4 anim2d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℕ0𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
6 elpell14qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℕ0𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
7 elpell1234qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1234QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
8 5 6 7 3imtr4d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ( Pell1234QR ‘ 𝐷 ) ) )
9 8 ssrdv ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ( Pell1234QR ‘ 𝐷 ) )