| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
| 2 |
1
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) ) |
| 3 |
2
|
anim1d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ℕ0 ∧ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℤ ∧ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
| 4 |
3
|
reximdv2 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑏 ∈ ℕ0 ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) → ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) |
| 5 |
4
|
anim2d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℕ0 ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
| 6 |
|
elpell14qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℕ0 ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
| 7 |
|
elpell1234qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1234QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ( 𝑎 = ( 𝑏 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑏 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) ) |
| 8 |
5 6 7
|
3imtr4d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) → 𝑎 ∈ ( Pell1234QR ‘ 𝐷 ) ) ) |
| 9 |
8
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell14QR ‘ 𝐷 ) ⊆ ( Pell1234QR ‘ 𝐷 ) ) |