| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell14qrss1234 |  |-  ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ ( Pell1234QR ` D ) ) | 
						
							| 2 | 1 | sselda |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. ( Pell1234QR ` D ) ) | 
						
							| 3 |  | pell14qrgt0 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 < A ) | 
						
							| 4 | 2 3 | jca |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 |  | pell1234qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) | 
						
							| 7 |  | ltnsym |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> -. A < 0 ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 0 < A -> -. A < 0 ) ) | 
						
							| 9 | 8 | impr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> -. A < 0 ) | 
						
							| 10 | 6 | adantrr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> A e. RR ) | 
						
							| 11 | 10 | lt0neg1d |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 12 | 9 11 | mtbid |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> -. 0 < -u A ) | 
						
							| 13 |  | pell14qrgt0 |  |-  ( ( D e. ( NN \ []NN ) /\ -u A e. ( Pell14QR ` D ) ) -> 0 < -u A ) | 
						
							| 14 | 13 | ex |  |-  ( D e. ( NN \ []NN ) -> ( -u A e. ( Pell14QR ` D ) -> 0 < -u A ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( -u A e. ( Pell14QR ` D ) -> 0 < -u A ) ) | 
						
							| 16 | 12 15 | mtod |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> -. -u A e. ( Pell14QR ` D ) ) | 
						
							| 17 |  | pell1234qrdich |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) | 
						
							| 18 | 17 | adantrr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) | 
						
							| 19 |  | orel2 |  |-  ( -. -u A e. ( Pell14QR ` D ) -> ( ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) -> A e. ( Pell14QR ` D ) ) ) | 
						
							| 20 | 16 18 19 | sylc |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 21 | 4 20 | impbida |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) ) |