| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell14qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 2 |  | 0cnd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 e. CC ) | 
						
							| 3 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 4 | 3 | ad3antrrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN ) | 
						
							| 5 | 4 | nnred |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. RR ) | 
						
							| 6 | 4 | nnnn0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN0 ) | 
						
							| 7 | 6 | nn0ge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ D ) | 
						
							| 8 | 5 7 | resqrtcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. RR ) | 
						
							| 9 |  | zre |  |-  ( b e. ZZ -> b e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( a e. NN0 /\ b e. ZZ ) -> b e. RR ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. RR ) | 
						
							| 12 | 8 11 | remulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. CC ) | 
						
							| 14 | 2 13 | abssubd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) = ( abs ` ( ( ( sqrt ` D ) x. b ) - 0 ) ) ) | 
						
							| 15 | 13 | subid1d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) x. b ) - 0 ) = ( ( sqrt ` D ) x. b ) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( ( sqrt ` D ) x. b ) - 0 ) ) = ( abs ` ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) = ( abs ` ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 18 |  | absresq |  |-  ( ( ( sqrt ` D ) x. b ) e. RR -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) | 
						
							| 19 | 12 18 | syl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) | 
						
							| 20 | 5 | recnd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. CC ) | 
						
							| 21 | 20 | sqrtcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. CC ) | 
						
							| 22 | 10 | recnd |  |-  ( ( a e. NN0 /\ b e. ZZ ) -> b e. CC ) | 
						
							| 23 | 22 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. CC ) | 
						
							| 24 | 21 23 | sqmuld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) | 
						
							| 25 | 20 | sqsqrtd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 27 | 19 24 26 | 3eqtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 28 |  | 0lt1 |  |-  0 < 1 | 
						
							| 29 |  | simpr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) | 
						
							| 30 | 28 29 | breqtrrid |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) | 
						
							| 31 | 11 | resqcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( b ^ 2 ) e. RR ) | 
						
							| 32 | 5 31 | remulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. RR ) | 
						
							| 33 |  | nn0re |  |-  ( a e. NN0 -> a e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( a e. NN0 /\ b e. ZZ ) -> a e. RR ) | 
						
							| 35 | 34 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. RR ) | 
						
							| 36 | 35 | resqcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a ^ 2 ) e. RR ) | 
						
							| 37 | 32 36 | posdifd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( D x. ( b ^ 2 ) ) < ( a ^ 2 ) <-> 0 < ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) ) | 
						
							| 38 | 30 37 | mpbird |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) < ( a ^ 2 ) ) | 
						
							| 39 | 27 38 | eqbrtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) < ( a ^ 2 ) ) | 
						
							| 40 | 13 | abscld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( sqrt ` D ) x. b ) ) e. RR ) | 
						
							| 41 | 13 | absge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( abs ` ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 42 |  | nn0ge0 |  |-  ( a e. NN0 -> 0 <_ a ) | 
						
							| 43 | 42 | adantr |  |-  ( ( a e. NN0 /\ b e. ZZ ) -> 0 <_ a ) | 
						
							| 44 | 43 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ a ) | 
						
							| 45 | 40 35 41 44 | lt2sqd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) < a <-> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) < ( a ^ 2 ) ) ) | 
						
							| 46 | 39 45 | mpbird |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( sqrt ` D ) x. b ) ) < a ) | 
						
							| 47 | 17 46 | eqbrtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) < a ) | 
						
							| 48 |  | 0red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 e. RR ) | 
						
							| 49 | 48 12 35 | absdifltd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) < a <-> ( ( ( ( sqrt ` D ) x. b ) - a ) < 0 /\ 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) ) ) | 
						
							| 50 | 47 49 | mpbid |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( ( sqrt ` D ) x. b ) - a ) < 0 /\ 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) ) | 
						
							| 51 | 50 | simprd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) | 
						
							| 52 |  | nn0cn |  |-  ( a e. NN0 -> a e. CC ) | 
						
							| 53 | 52 | adantr |  |-  ( ( a e. NN0 /\ b e. ZZ ) -> a e. CC ) | 
						
							| 54 | 53 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. CC ) | 
						
							| 55 | 54 13 | addcomd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a + ( ( sqrt ` D ) x. b ) ) = ( ( ( sqrt ` D ) x. b ) + a ) ) | 
						
							| 56 | 51 55 | breqtrrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 57 | 56 | adantrl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 58 |  | simprl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 59 | 57 58 | breqtrrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < A ) | 
						
							| 60 | 59 | ex |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < A ) ) | 
						
							| 61 | 60 | rexlimdvva |  |-  ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < A ) ) | 
						
							| 62 | 61 | expimpd |  |-  ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < A ) ) | 
						
							| 63 | 1 62 | sylbid |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> 0 < A ) ) | 
						
							| 64 | 63 | imp |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 < A ) |