Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> D e. ( NN \ []NN ) ) |
2 |
|
simprll |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> A e. ( Pell1234QR ` D ) ) |
3 |
|
simprrl |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> B e. ( Pell1234QR ` D ) ) |
4 |
|
pell1234qrmulcl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) |
6 |
|
pell1234qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) |
7 |
2 6
|
syldan |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> A e. RR ) |
8 |
|
pell1234qrre |
|- ( ( D e. ( NN \ []NN ) /\ B e. ( Pell1234QR ` D ) ) -> B e. RR ) |
9 |
3 8
|
syldan |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> B e. RR ) |
10 |
|
simprlr |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < A ) |
11 |
|
simprrr |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < B ) |
12 |
7 9 10 11
|
mulgt0d |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < ( A x. B ) ) |
13 |
5 12
|
jca |
|- ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) |
14 |
13
|
ex |
|- ( D e. ( NN \ []NN ) -> ( ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) ) |
15 |
|
elpell14qr2 |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) ) |
16 |
|
elpell14qr2 |
|- ( D e. ( NN \ []NN ) -> ( B e. ( Pell14QR ` D ) <-> ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) |
17 |
15 16
|
anbi12d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) <-> ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) ) |
18 |
|
elpell14qr2 |
|- ( D e. ( NN \ []NN ) -> ( ( A x. B ) e. ( Pell14QR ` D ) <-> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) ) |
19 |
14 17 18
|
3imtr4d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. B ) e. ( Pell14QR ` D ) ) ) |
20 |
19
|
3impib |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. B ) e. ( Pell14QR ` D ) ) |