| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1234qrreccl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) | 
						
							| 2 | 1 | adantrr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) | 
						
							| 3 |  | pell1234qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) | 
						
							| 4 | 3 | adantrr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> A e. RR ) | 
						
							| 5 |  | simprr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> 0 < A ) | 
						
							| 6 | 4 5 | recgt0d |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> 0 < ( 1 / A ) ) | 
						
							| 7 | 2 6 | jca |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) | 
						
							| 8 | 7 | ex |  |-  ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) ) | 
						
							| 9 |  | elpell14qr2 |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) ) | 
						
							| 10 |  | elpell14qr2 |  |-  ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell14QR ` D ) <-> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) ) | 
						
							| 11 | 8 9 10 | 3imtr4d |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> ( 1 / A ) e. ( Pell14QR ` D ) ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 / A ) e. ( Pell14QR ` D ) ) |