Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
2 |
1
|
biimpa |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
3 |
|
pell1234qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) |
4 |
|
pell1234qrne0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A =/= 0 ) |
5 |
3 4
|
rereccld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. RR ) |
6 |
5
|
ad2antrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. RR ) |
7 |
|
simplrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> a e. ZZ ) |
8 |
|
simplrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) |
9 |
8
|
znegcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u b e. ZZ ) |
10 |
5
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. CC ) |
11 |
10
|
ad2antrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. CC ) |
12 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
13 |
12
|
adantr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> a e. CC ) |
14 |
13
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> a e. CC ) |
15 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
16 |
15
|
nncnd |
|- ( D e. ( NN \ []NN ) -> D e. CC ) |
17 |
16
|
ad3antrrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> D e. CC ) |
18 |
17
|
sqrtcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) |
19 |
8
|
zcnd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. CC ) |
20 |
19
|
negcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u b e. CC ) |
21 |
18 20
|
mulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. -u b ) e. CC ) |
22 |
14 21
|
addcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) |
23 |
3
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. CC ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. CC ) |
25 |
4
|
ad2antrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) |
26 |
18 19
|
sqmuld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
27 |
17
|
sqsqrtd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
28 |
27
|
oveq1d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
29 |
26 28
|
eqtr2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( D x. ( b ^ 2 ) ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) |
30 |
29
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) |
31 |
|
simprr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
32 |
18 19
|
mulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
33 |
|
subsq |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
34 |
14 32 33
|
syl2anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
35 |
30 31 34
|
3eqtr3d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
36 |
24 25
|
recidd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = 1 ) |
37 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
38 |
18 19
|
mulneg2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. -u b ) = -u ( ( sqrt ` D ) x. b ) ) |
39 |
38
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) |
40 |
14 32
|
negsubd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + -u ( ( sqrt ` D ) x. b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) |
41 |
39 40
|
eqtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) |
42 |
37 41
|
oveq12d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
43 |
35 36 42
|
3eqtr4d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
44 |
11 22 24 25 43
|
mulcanad |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) |
45 |
|
sqneg |
|- ( b e. CC -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
46 |
19 45
|
syl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
47 |
46
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( D x. ( -u b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
48 |
47
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
49 |
48 31
|
eqtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) |
50 |
|
oveq1 |
|- ( c = a -> ( c + ( ( sqrt ` D ) x. d ) ) = ( a + ( ( sqrt ` D ) x. d ) ) ) |
51 |
50
|
eqeq2d |
|- ( c = a -> ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) ) ) |
52 |
|
oveq1 |
|- ( c = a -> ( c ^ 2 ) = ( a ^ 2 ) ) |
53 |
52
|
oveq1d |
|- ( c = a -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) |
54 |
53
|
eqeq1d |
|- ( c = a -> ( ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
55 |
51 54
|
anbi12d |
|- ( c = a -> ( ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) /\ ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) |
56 |
|
oveq2 |
|- ( d = -u b -> ( ( sqrt ` D ) x. d ) = ( ( sqrt ` D ) x. -u b ) ) |
57 |
56
|
oveq2d |
|- ( d = -u b -> ( a + ( ( sqrt ` D ) x. d ) ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) |
58 |
57
|
eqeq2d |
|- ( d = -u b -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
59 |
|
oveq1 |
|- ( d = -u b -> ( d ^ 2 ) = ( -u b ^ 2 ) ) |
60 |
59
|
oveq2d |
|- ( d = -u b -> ( D x. ( d ^ 2 ) ) = ( D x. ( -u b ^ 2 ) ) ) |
61 |
60
|
oveq2d |
|- ( d = -u b -> ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) ) |
62 |
61
|
eqeq1d |
|- ( d = -u b -> ( ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) |
63 |
58 62
|
anbi12d |
|- ( d = -u b -> ( ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) /\ ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) ) |
64 |
55 63
|
rspc2ev |
|- ( ( a e. ZZ /\ -u b e. ZZ /\ ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) -> E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
65 |
7 9 44 49 64
|
syl112anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
66 |
6 65
|
jca |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) |
67 |
66
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
68 |
67
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
69 |
68
|
adantld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
70 |
2 69
|
mpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) |
71 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
72 |
71
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
73 |
70 72
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) |