| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1234qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 2 | 1 | biimpa |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 3 |  | pell1234qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) | 
						
							| 4 |  | pell1234qrne0 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A =/= 0 ) | 
						
							| 5 | 3 4 | rereccld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. RR ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. RR ) | 
						
							| 7 |  | simplrl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> a e. ZZ ) | 
						
							| 8 |  | simplrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) | 
						
							| 9 | 8 | znegcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u b e. ZZ ) | 
						
							| 10 | 5 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. CC ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. CC ) | 
						
							| 12 |  | zcn |  |-  ( a e. ZZ -> a e. CC ) | 
						
							| 13 | 12 | adantr |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> a e. CC ) | 
						
							| 14 | 13 | ad2antlr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> a e. CC ) | 
						
							| 15 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 16 | 15 | nncnd |  |-  ( D e. ( NN \ []NN ) -> D e. CC ) | 
						
							| 17 | 16 | ad3antrrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> D e. CC ) | 
						
							| 18 | 17 | sqrtcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 19 | 8 | zcnd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. CC ) | 
						
							| 20 | 19 | negcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u b e. CC ) | 
						
							| 21 | 18 20 | mulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. -u b ) e. CC ) | 
						
							| 22 | 14 21 | addcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) | 
						
							| 23 | 3 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. CC ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. CC ) | 
						
							| 25 | 4 | ad2antrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) | 
						
							| 26 | 18 19 | sqmuld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) | 
						
							| 27 | 17 | sqsqrtd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 28 | 27 | oveq1d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 29 | 26 28 | eqtr2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( D x. ( b ^ 2 ) ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) | 
						
							| 31 |  | simprr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) | 
						
							| 32 | 18 19 | mulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) | 
						
							| 33 |  | subsq |  |-  ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 34 | 14 32 33 | syl2anc |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 35 | 30 31 34 | 3eqtr3d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 36 | 24 25 | recidd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = 1 ) | 
						
							| 37 |  | simprl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 38 | 18 19 | mulneg2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. -u b ) = -u ( ( sqrt ` D ) x. b ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 40 | 14 32 | negsubd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + -u ( ( sqrt ` D ) x. b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 41 | 39 40 | eqtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 42 | 37 41 | oveq12d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 43 | 35 36 42 | 3eqtr4d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 44 | 11 22 24 25 43 | mulcanad |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) | 
						
							| 45 |  | sqneg |  |-  ( b e. CC -> ( -u b ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 46 | 19 45 | syl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( D x. ( -u b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) | 
						
							| 49 | 48 31 | eqtrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) | 
						
							| 50 |  | oveq1 |  |-  ( c = a -> ( c + ( ( sqrt ` D ) x. d ) ) = ( a + ( ( sqrt ` D ) x. d ) ) ) | 
						
							| 51 | 50 | eqeq2d |  |-  ( c = a -> ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) ) ) | 
						
							| 52 |  | oveq1 |  |-  ( c = a -> ( c ^ 2 ) = ( a ^ 2 ) ) | 
						
							| 53 | 52 | oveq1d |  |-  ( c = a -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) | 
						
							| 54 | 53 | eqeq1d |  |-  ( c = a -> ( ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) | 
						
							| 55 | 51 54 | anbi12d |  |-  ( c = a -> ( ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) /\ ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 56 |  | oveq2 |  |-  ( d = -u b -> ( ( sqrt ` D ) x. d ) = ( ( sqrt ` D ) x. -u b ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( d = -u b -> ( a + ( ( sqrt ` D ) x. d ) ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) | 
						
							| 58 | 57 | eqeq2d |  |-  ( d = -u b -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 59 |  | oveq1 |  |-  ( d = -u b -> ( d ^ 2 ) = ( -u b ^ 2 ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( d = -u b -> ( D x. ( d ^ 2 ) ) = ( D x. ( -u b ^ 2 ) ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( d = -u b -> ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) ) | 
						
							| 62 | 61 | eqeq1d |  |-  ( d = -u b -> ( ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) | 
						
							| 63 | 58 62 | anbi12d |  |-  ( d = -u b -> ( ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. d ) ) /\ ( ( a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 64 | 55 63 | rspc2ev |  |-  ( ( a e. ZZ /\ -u b e. ZZ /\ ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) -> E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) | 
						
							| 65 | 7 9 44 49 64 | syl112anc |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) | 
						
							| 66 | 6 65 | jca |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 67 | 66 | ex |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 68 | 67 | rexlimdvva |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 69 | 68 | adantld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 70 | 2 69 | mpd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 71 |  | elpell1234qr |  |-  ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. c e. ZZ E. d e. ZZ ( ( 1 / A ) = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 73 | 70 72 | mpbird |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) |