| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1234qrreccl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 2 | 1 | adantrr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 ) ) | 
						
							| 3 |  | pell1234qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1234QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 3 | adantrr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | simprr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  0  <  𝐴 ) | 
						
							| 6 | 4 5 | recgt0d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  0  <  ( 1  /  𝐴 ) ) | 
						
							| 7 | 2 6 | jca | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 1  /  𝐴 ) ) ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 1  /  𝐴 ) ) ) ) | 
						
							| 9 |  | elpell14qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  𝐴 ) ) ) | 
						
							| 10 |  | elpell14qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 1  /  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( ( 1  /  𝐴 )  ∈  ( Pell1234QR ‘ 𝐷 )  ∧  0  <  ( 1  /  𝐴 ) ) ) ) | 
						
							| 11 | 8 9 10 | 3imtr4d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  →  ( 1  /  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ( Pell14QR ‘ 𝐷 ) ) |