| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
| 4 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
| 6 |
5
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
| 7 |
|
pell14qrne0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ≠ 0 ) |
| 8 |
7
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐵 ≠ 0 ) |
| 9 |
3 6 8
|
divrecd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
| 10 |
|
pell14qrreccl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 11 |
10
|
3adant2 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 12 |
|
pell14qrmulcl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ ( 1 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 13 |
11 12
|
syld3an3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) |
| 14 |
9 13
|
eqeltrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) |