Metamath Proof Explorer


Theorem pell14qrexpclnn0

Description: Lemma for pell14qrexpcl . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrexpclnn0 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑎 = 0 → ( 𝐴𝑎 ) = ( 𝐴 ↑ 0 ) )
2 1 eleq1d ( 𝑎 = 0 → ( ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
3 2 imbi2d ( 𝑎 = 0 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
4 oveq2 ( 𝑎 = 𝑏 → ( 𝐴𝑎 ) = ( 𝐴𝑏 ) )
5 4 eleq1d ( 𝑎 = 𝑏 → ( ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
6 5 imbi2d ( 𝑎 = 𝑏 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
7 oveq2 ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴𝑎 ) = ( 𝐴 ↑ ( 𝑏 + 1 ) ) )
8 7 eleq1d ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
9 8 imbi2d ( 𝑎 = ( 𝑏 + 1 ) → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
10 oveq2 ( 𝑎 = 𝐵 → ( 𝐴𝑎 ) = ( 𝐴𝐵 ) )
11 10 eleq1d ( 𝑎 = 𝐵 → ( ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
12 11 imbi2d ( 𝑎 = 𝐵 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑎 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ↔ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
13 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
14 13 recnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ )
15 14 exp0d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) = 1 )
16 pell14qrne0 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ≠ 0 )
17 14 16 dividd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) = 1 )
18 15 17 eqtr4d ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) = ( 𝐴 / 𝐴 ) )
19 pell14qrdivcl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )
20 19 3anidm23 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 / 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )
21 18 20 eqeltrd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ 0 ) ∈ ( Pell14QR ‘ 𝐷 ) )
22 14 3ad2ant2 ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ )
23 simp1 ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝑏 ∈ ℕ0 )
24 22 23 expp1d ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) = ( ( 𝐴𝑏 ) · 𝐴 ) )
25 simp2l ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) )
26 simp3 ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) )
27 simp2r ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) )
28 pell14qrmulcl ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴𝑏 ) · 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )
29 25 26 27 28 syl3anc ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴𝑏 ) · 𝐴 ) ∈ ( Pell14QR ‘ 𝐷 ) )
30 24 29 eqeltrd ( ( 𝑏 ∈ ℕ0 ∧ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) )
31 30 3exp ( 𝑏 ∈ ℕ0 → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
32 31 a2d ( 𝑏 ∈ ℕ0 → ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝑏 ) ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ↑ ( 𝑏 + 1 ) ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
33 3 6 9 12 21 32 nn0ind ( 𝐵 ∈ ℕ0 → ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) )
34 33 expdcom ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) → ( 𝐵 ∈ ℕ0 → ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) ) ) )
35 34 3imp ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴𝐵 ) ∈ ( Pell14QR ‘ 𝐷 ) )