| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( a = 0 -> ( A ^ a ) = ( A ^ 0 ) ) |
| 2 |
1
|
eleq1d |
|- ( a = 0 -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ 0 ) e. ( Pell14QR ` D ) ) ) |
| 3 |
2
|
imbi2d |
|- ( a = 0 -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) e. ( Pell14QR ` D ) ) ) ) |
| 4 |
|
oveq2 |
|- ( a = b -> ( A ^ a ) = ( A ^ b ) ) |
| 5 |
4
|
eleq1d |
|- ( a = b -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ b ) e. ( Pell14QR ` D ) ) ) |
| 6 |
5
|
imbi2d |
|- ( a = b -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) ) ) |
| 7 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A ^ a ) = ( A ^ ( b + 1 ) ) ) |
| 8 |
7
|
eleq1d |
|- ( a = ( b + 1 ) -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) |
| 9 |
8
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) |
| 10 |
|
oveq2 |
|- ( a = B -> ( A ^ a ) = ( A ^ B ) ) |
| 11 |
10
|
eleq1d |
|- ( a = B -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ B ) e. ( Pell14QR ` D ) ) ) |
| 12 |
11
|
imbi2d |
|- ( a = B -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) ) |
| 13 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
| 14 |
13
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
| 15 |
14
|
exp0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) = 1 ) |
| 16 |
|
pell14qrne0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A =/= 0 ) |
| 17 |
14 16
|
dividd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) = 1 ) |
| 18 |
15 17
|
eqtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) = ( A / A ) ) |
| 19 |
|
pell14qrdivcl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) e. ( Pell14QR ` D ) ) |
| 20 |
19
|
3anidm23 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) e. ( Pell14QR ` D ) ) |
| 21 |
18 20
|
eqeltrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) e. ( Pell14QR ` D ) ) |
| 22 |
14
|
3ad2ant2 |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> A e. CC ) |
| 23 |
|
simp1 |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> b e. NN0 ) |
| 24 |
22 23
|
expp1d |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) = ( ( A ^ b ) x. A ) ) |
| 25 |
|
simp2l |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> D e. ( NN \ []NN ) ) |
| 26 |
|
simp3 |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) |
| 27 |
|
simp2r |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> A e. ( Pell14QR ` D ) ) |
| 28 |
|
pell14qrmulcl |
|- ( ( D e. ( NN \ []NN ) /\ ( A ^ b ) e. ( Pell14QR ` D ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) x. A ) e. ( Pell14QR ` D ) ) |
| 29 |
25 26 27 28
|
syl3anc |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) x. A ) e. ( Pell14QR ` D ) ) |
| 30 |
24 29
|
eqeltrd |
|- ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) |
| 31 |
30
|
3exp |
|- ( b e. NN0 -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) e. ( Pell14QR ` D ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) |
| 32 |
31
|
a2d |
|- ( b e. NN0 -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) |
| 33 |
3 6 9 12 21 32
|
nn0ind |
|- ( B e. NN0 -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) |
| 34 |
33
|
expdcom |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> ( B e. NN0 -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) ) |
| 35 |
34
|
3imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. NN0 ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |