Step |
Hyp |
Ref |
Expression |
1 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
2 |
1
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
3 |
2
|
3adant3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> A e. CC ) |
4 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B e. RR ) |
5 |
4
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B e. CC ) |
6 |
5
|
3adant2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> B e. CC ) |
7 |
|
pell14qrne0 |
|- ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B =/= 0 ) |
8 |
7
|
3adant2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> B =/= 0 ) |
9 |
3 6 8
|
divrecd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
10 |
|
pell14qrreccl |
|- ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> ( 1 / B ) e. ( Pell14QR ` D ) ) |
11 |
10
|
3adant2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( 1 / B ) e. ( Pell14QR ` D ) ) |
12 |
|
pell14qrmulcl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ ( 1 / B ) e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / B ) ) e. ( Pell14QR ` D ) ) |
13 |
11 12
|
syld3an3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / B ) ) e. ( Pell14QR ` D ) ) |
14 |
9 13
|
eqeltrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A / B ) e. ( Pell14QR ` D ) ) |