Metamath Proof Explorer


Theorem pell14qrexpclnn0

Description: Lemma for pell14qrexpcl . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrexpclnn0 D A Pell14QR D B 0 A B Pell14QR D

Proof

Step Hyp Ref Expression
1 oveq2 a = 0 A a = A 0
2 1 eleq1d a = 0 A a Pell14QR D A 0 Pell14QR D
3 2 imbi2d a = 0 D A Pell14QR D A a Pell14QR D D A Pell14QR D A 0 Pell14QR D
4 oveq2 a = b A a = A b
5 4 eleq1d a = b A a Pell14QR D A b Pell14QR D
6 5 imbi2d a = b D A Pell14QR D A a Pell14QR D D A Pell14QR D A b Pell14QR D
7 oveq2 a = b + 1 A a = A b + 1
8 7 eleq1d a = b + 1 A a Pell14QR D A b + 1 Pell14QR D
9 8 imbi2d a = b + 1 D A Pell14QR D A a Pell14QR D D A Pell14QR D A b + 1 Pell14QR D
10 oveq2 a = B A a = A B
11 10 eleq1d a = B A a Pell14QR D A B Pell14QR D
12 11 imbi2d a = B D A Pell14QR D A a Pell14QR D D A Pell14QR D A B Pell14QR D
13 pell14qrre D A Pell14QR D A
14 13 recnd D A Pell14QR D A
15 14 exp0d D A Pell14QR D A 0 = 1
16 pell14qrne0 D A Pell14QR D A 0
17 14 16 dividd D A Pell14QR D A A = 1
18 15 17 eqtr4d D A Pell14QR D A 0 = A A
19 pell14qrdivcl D A Pell14QR D A Pell14QR D A A Pell14QR D
20 19 3anidm23 D A Pell14QR D A A Pell14QR D
21 18 20 eqeltrd D A Pell14QR D A 0 Pell14QR D
22 14 3ad2ant2 b 0 D A Pell14QR D A b Pell14QR D A
23 simp1 b 0 D A Pell14QR D A b Pell14QR D b 0
24 22 23 expp1d b 0 D A Pell14QR D A b Pell14QR D A b + 1 = A b A
25 simp2l b 0 D A Pell14QR D A b Pell14QR D D
26 simp3 b 0 D A Pell14QR D A b Pell14QR D A b Pell14QR D
27 simp2r b 0 D A Pell14QR D A b Pell14QR D A Pell14QR D
28 pell14qrmulcl D A b Pell14QR D A Pell14QR D A b A Pell14QR D
29 25 26 27 28 syl3anc b 0 D A Pell14QR D A b Pell14QR D A b A Pell14QR D
30 24 29 eqeltrd b 0 D A Pell14QR D A b Pell14QR D A b + 1 Pell14QR D
31 30 3exp b 0 D A Pell14QR D A b Pell14QR D A b + 1 Pell14QR D
32 31 a2d b 0 D A Pell14QR D A b Pell14QR D D A Pell14QR D A b + 1 Pell14QR D
33 3 6 9 12 21 32 nn0ind B 0 D A Pell14QR D A B Pell14QR D
34 33 expdcom D A Pell14QR D B 0 A B Pell14QR D
35 34 3imp D A Pell14QR D B 0 A B Pell14QR D