| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0 | ⊢ ( 𝐵  ∈  ℤ  ↔  ( 𝐵  ∈  ℝ  ∧  ( 𝐵  ∈  ℕ0  ∨  - 𝐵  ∈  ℕ0 ) ) ) | 
						
							| 2 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ∈  ℕ0 )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 3 |  | simpllr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 5 |  | pell14qrexpclnn0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 7 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℝ ) | 
						
							| 11 | 10 | recnd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  - 𝐵  ∈  ℕ0 ) | 
						
							| 13 |  | expneg2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  - 𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  =  ( 1  /  ( 𝐴 ↑ - 𝐵 ) ) ) | 
						
							| 14 | 9 11 12 13 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  =  ( 1  /  ( 𝐴 ↑ - 𝐵 ) ) ) | 
						
							| 15 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 16 |  | simpllr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 17 |  | pell14qrexpclnn0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  - 𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ - 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 18 | 15 16 12 17 | syl3anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ - 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 19 |  | pell14qrreccl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴 ↑ - 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  /  ( 𝐴 ↑ - 𝐵 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 20 | 15 18 19 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  ( 1  /  ( 𝐴 ↑ - 𝐵 ) )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 21 | 14 20 | eqeltrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  - 𝐵  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 22 | 6 21 | jaodan | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐵  ∈  ℕ0  ∨  - 𝐵  ∈  ℕ0 ) )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 23 | 22 | expl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐵  ∈  ℝ  ∧  ( 𝐵  ∈  ℕ0  ∨  - 𝐵  ∈  ℕ0 ) )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 24 | 1 23 | biimtrid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐵  ∈  ℤ  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) ) | 
						
							| 25 | 24 | 3impia | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  𝐵  ∈  ℤ )  →  ( 𝐴 ↑ 𝐵 )  ∈  ( Pell14QR ‘ 𝐷 ) ) |