Metamath Proof Explorer


Theorem pell1qrss14

Description: First-quadrant Pell solutions are a subset of the positive solutions. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell1qrss14 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ )
2 1 a1i ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ ) )
3 2 anim1d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ℕ0 ∧ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℤ ∧ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
4 3 reximdv2 ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ∃ 𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
5 4 reximdv ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
6 5 anim2d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
7 elpell1qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
8 elpell14qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
9 6 7 8 3imtr4d ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) )
10 9 ssrdv ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) )