Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
2 |
1
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) ) |
3 |
2
|
anim1d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑏 ∈ ℕ0 ∧ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℤ ∧ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
4 |
3
|
reximdv2 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ∃ 𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
5 |
4
|
reximdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
6 |
5
|
anim2d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
7 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
8 |
|
elpell14qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝑎 ∈ ℝ ∧ ∃ 𝑐 ∈ ℕ0 ∃ 𝑏 ∈ ℤ ( 𝑎 = ( 𝑐 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑐 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
9 |
6 7 8
|
3imtr4d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝑎 ∈ ( Pell1QR ‘ 𝐷 ) → 𝑎 ∈ ( Pell14QR ‘ 𝐷 ) ) ) |
10 |
9
|
ssrdv |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |