Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
2 |
1
|
a1i |
|- ( D e. ( NN \ []NN ) -> ( b e. NN0 -> b e. ZZ ) ) |
3 |
2
|
anim1d |
|- ( D e. ( NN \ []NN ) -> ( ( b e. NN0 /\ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. ZZ /\ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
4 |
3
|
reximdv2 |
|- ( D e. ( NN \ []NN ) -> ( E. b e. NN0 ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> E. b e. ZZ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
5 |
4
|
reximdv |
|- ( D e. ( NN \ []NN ) -> ( E. c e. NN0 E. b e. NN0 ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> E. c e. NN0 E. b e. ZZ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
6 |
5
|
anim2d |
|- ( D e. ( NN \ []NN ) -> ( ( a e. RR /\ E. c e. NN0 E. b e. NN0 ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a e. RR /\ E. c e. NN0 E. b e. ZZ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
7 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( a e. ( Pell1QR ` D ) <-> ( a e. RR /\ E. c e. NN0 E. b e. NN0 ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
8 |
|
elpell14qr |
|- ( D e. ( NN \ []NN ) -> ( a e. ( Pell14QR ` D ) <-> ( a e. RR /\ E. c e. NN0 E. b e. ZZ ( a = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
9 |
6 7 8
|
3imtr4d |
|- ( D e. ( NN \ []NN ) -> ( a e. ( Pell1QR ` D ) -> a e. ( Pell14QR ` D ) ) ) |
10 |
9
|
ssrdv |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |