| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell14qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 2 | 1 | biimpa |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 3 |  | simplrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) | 
						
							| 4 |  | elznn0 |  |-  ( b e. ZZ <-> ( b e. RR /\ ( b e. NN0 \/ -u b e. NN0 ) ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. RR /\ ( b e. NN0 \/ -u b e. NN0 ) ) ) | 
						
							| 6 | 5 | simprd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 \/ -u b e. NN0 ) ) | 
						
							| 7 |  | simplr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> A e. RR ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> A e. RR ) | 
						
							| 9 |  | simprl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> a e. NN0 ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> a e. NN0 ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> b e. NN0 ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 13 |  | rsp2e |  |-  ( ( a e. NN0 /\ b e. NN0 /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 15 | 8 14 | jca |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 16 | 15 | ex |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 -> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 17 |  | elpell1qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 18 | 17 | ad4antr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 19 | 16 18 | sylibrd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 -> A e. ( Pell1QR ` D ) ) ) | 
						
							| 20 | 7 | ad2antrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> A e. RR ) | 
						
							| 21 |  | pell14qrne0 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A =/= 0 ) | 
						
							| 22 | 21 | ad4antr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> A =/= 0 ) | 
						
							| 23 | 20 22 | rereccld |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( 1 / A ) e. RR ) | 
						
							| 24 | 9 | ad2antrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> a e. NN0 ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> -u b e. NN0 ) | 
						
							| 26 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) | 
						
							| 28 | 27 21 | reccld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 / A ) e. CC ) | 
						
							| 29 | 28 | ad3antrrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. CC ) | 
						
							| 30 |  | nn0cn |  |-  ( a e. NN0 -> a e. CC ) | 
						
							| 31 | 30 | ad2antrl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> a e. CC ) | 
						
							| 32 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 33 | 32 | nncnd |  |-  ( D e. ( NN \ []NN ) -> D e. CC ) | 
						
							| 34 | 33 | ad3antrrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> D e. CC ) | 
						
							| 35 | 34 | sqrtcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 36 |  | zcn |  |-  ( b e. ZZ -> b e. CC ) | 
						
							| 37 | 36 | ad2antll |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> b e. CC ) | 
						
							| 38 | 37 | negcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> -u b e. CC ) | 
						
							| 39 | 35 38 | mulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. -u b ) e. CC ) | 
						
							| 40 | 31 39 | addcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) | 
						
							| 42 | 27 | ad3antrrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. CC ) | 
						
							| 43 | 21 | ad3antrrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) | 
						
							| 44 | 27 21 | recidd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / A ) ) = 1 ) | 
						
							| 45 | 44 | ad3antrrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = 1 ) | 
						
							| 46 |  | simprr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) | 
						
							| 47 | 45 46 | eqtr4d |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) | 
						
							| 48 | 31 | adantr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> a e. CC ) | 
						
							| 49 | 35 37 | mulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) | 
						
							| 51 |  | subsq |  |-  ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 52 | 48 50 51 | syl2anc |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 53 | 35 37 | sqmuld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) | 
						
							| 54 | 34 | sqsqrtd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 56 | 53 55 | eqtr2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( D x. ( b ^ 2 ) ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 60 | 35 37 | mulneg2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. -u b ) = -u ( ( sqrt ` D ) x. b ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 62 |  | negsub |  |-  ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( a + -u ( ( sqrt ` D ) x. b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 63 | 62 | eqcomd |  |-  ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( a - ( ( sqrt ` D ) x. b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 64 | 31 49 63 | syl2anc |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a - ( ( sqrt ` D ) x. b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 65 | 61 64 | eqtr4d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 67 | 59 66 | oveq12d |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 68 | 52 58 67 | 3eqtr4d |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 69 | 68 | adantrr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 70 | 47 69 | eqtrd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 71 | 29 41 42 43 70 | mulcanad |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) | 
						
							| 73 | 37 | ad2antrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> b e. CC ) | 
						
							| 74 |  | sqneg |  |-  ( b e. CC -> ( -u b ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( -u b ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( D x. ( -u b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) | 
						
							| 78 |  | simplrr |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) | 
						
							| 79 | 77 78 | eqtrd |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) | 
						
							| 80 | 72 79 | jca |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) | 
						
							| 81 |  | oveq2 |  |-  ( c = -u b -> ( ( sqrt ` D ) x. c ) = ( ( sqrt ` D ) x. -u b ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( c = -u b -> ( a + ( ( sqrt ` D ) x. c ) ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) | 
						
							| 83 | 82 | eqeq2d |  |-  ( c = -u b -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) | 
						
							| 84 |  | oveq1 |  |-  ( c = -u b -> ( c ^ 2 ) = ( -u b ^ 2 ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( c = -u b -> ( D x. ( c ^ 2 ) ) = ( D x. ( -u b ^ 2 ) ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( c = -u b -> ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) ) | 
						
							| 87 | 86 | eqeq1d |  |-  ( c = -u b -> ( ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) | 
						
							| 88 | 83 87 | anbi12d |  |-  ( c = -u b -> ( ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 89 | 88 | rspcev |  |-  ( ( -u b e. NN0 /\ ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) | 
						
							| 90 | 25 80 89 | syl2anc |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) | 
						
							| 91 |  | rspe |  |-  ( ( a e. NN0 /\ E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) | 
						
							| 92 | 24 90 91 | syl2anc |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) | 
						
							| 93 | 23 92 | jca |  |-  ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b e. NN0 -> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 95 |  | elpell1qr |  |-  ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell1QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 96 | 95 | ad4antr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. ( Pell1QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 97 | 94 96 | sylibrd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b e. NN0 -> ( 1 / A ) e. ( Pell1QR ` D ) ) ) | 
						
							| 98 | 19 97 | orim12d |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( b e. NN0 \/ -u b e. NN0 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) | 
						
							| 99 | 6 98 | mpd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) | 
						
							| 100 | 99 | ex |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) | 
						
							| 101 | 100 | rexlimdvva |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) | 
						
							| 102 | 101 | expimpd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) | 
						
							| 103 | 2 102 | mpd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) |