| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 2 |  | 1red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 e. RR ) | 
						
							| 3 |  | simplrl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. NN0 ) | 
						
							| 4 | 3 | nn0red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. RR ) | 
						
							| 5 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 6 | 5 | ad3antrrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN ) | 
						
							| 7 | 6 | nnnn0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN0 ) | 
						
							| 8 | 7 | nn0red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. RR ) | 
						
							| 9 | 7 | nn0ge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ D ) | 
						
							| 10 | 8 9 | resqrtcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. RR ) | 
						
							| 11 |  | simplrr |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. NN0 ) | 
						
							| 12 | 11 | nn0red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. RR ) | 
						
							| 13 | 10 12 | remulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. RR ) | 
						
							| 14 | 4 13 | readdcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a + ( ( sqrt ` D ) x. b ) ) e. RR ) | 
						
							| 15 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 16 | 15 | a1i |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 2 e. NN0 ) | 
						
							| 17 | 11 16 | nn0expcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( b ^ 2 ) e. NN0 ) | 
						
							| 18 | 7 17 | nn0mulcld |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. NN0 ) | 
						
							| 19 | 18 | nn0ge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( D x. ( b ^ 2 ) ) ) | 
						
							| 20 | 18 | nn0red |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. RR ) | 
						
							| 21 | 2 20 | addge02d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 0 <_ ( D x. ( b ^ 2 ) ) <-> 1 <_ ( ( D x. ( b ^ 2 ) ) + 1 ) ) ) | 
						
							| 22 | 19 21 | mpbid |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ ( ( D x. ( b ^ 2 ) ) + 1 ) ) | 
						
							| 23 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 24 | 23 | a1i |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 ^ 2 ) = 1 ) | 
						
							| 25 |  | nn0cn |  |-  ( a e. NN0 -> a e. CC ) | 
						
							| 26 | 25 | ad2antrl |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> a e. CC ) | 
						
							| 27 | 26 | sqcld |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( a ^ 2 ) e. CC ) | 
						
							| 28 | 5 | ad2antrr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> D e. NN ) | 
						
							| 29 | 28 | nncnd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> D e. CC ) | 
						
							| 30 |  | nn0cn |  |-  ( b e. NN0 -> b e. CC ) | 
						
							| 31 | 30 | ad2antll |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> b e. CC ) | 
						
							| 32 | 31 | sqcld |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( b ^ 2 ) e. CC ) | 
						
							| 33 | 29 32 | mulcld |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( D x. ( b ^ 2 ) ) e. CC ) | 
						
							| 34 |  | 1cnd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> 1 e. CC ) | 
						
							| 35 | 27 33 34 | subaddd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( D x. ( b ^ 2 ) ) + 1 ) = ( a ^ 2 ) ) ) | 
						
							| 36 | 35 | biimpa |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( D x. ( b ^ 2 ) ) + 1 ) = ( a ^ 2 ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a ^ 2 ) = ( ( D x. ( b ^ 2 ) ) + 1 ) ) | 
						
							| 38 | 22 24 37 | 3brtr4d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 ^ 2 ) <_ ( a ^ 2 ) ) | 
						
							| 39 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 40 | 39 | a1i |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ 1 ) | 
						
							| 41 | 3 | nn0ge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ a ) | 
						
							| 42 | 2 4 40 41 | le2sqd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 <_ a <-> ( 1 ^ 2 ) <_ ( a ^ 2 ) ) ) | 
						
							| 43 | 38 42 | mpbird |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ a ) | 
						
							| 44 | 8 9 | sqrtge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( sqrt ` D ) ) | 
						
							| 45 | 11 | nn0ge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ b ) | 
						
							| 46 | 10 12 44 45 | mulge0d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( ( sqrt ` D ) x. b ) ) | 
						
							| 47 | 4 13 | addge01d |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 0 <_ ( ( sqrt ` D ) x. b ) <-> a <_ ( a + ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 48 | 46 47 | mpbid |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a <_ ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 49 | 2 4 14 43 48 | letrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 50 | 49 | adantrl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 51 |  | simprl |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 52 | 50 51 | breqtrrd |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ A ) | 
						
							| 53 | 52 | ex |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ A ) ) | 
						
							| 54 | 53 | rexlimdvva |  |-  ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ A ) ) | 
						
							| 55 | 54 | expimpd |  |-  ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ A ) ) | 
						
							| 56 | 1 55 | sylbid |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) -> 1 <_ A ) ) | 
						
							| 57 | 56 | imp |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> 1 <_ A ) |