| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 |  | 1red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ∈  ℝ ) | 
						
							| 3 |  | simplrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 4 | 3 | nn0red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑎  ∈  ℝ ) | 
						
							| 5 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 6 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℕ ) | 
						
							| 7 | 6 | nnnn0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝐷  ∈  ℝ ) | 
						
							| 9 | 7 | nn0ge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  𝐷 ) | 
						
							| 10 | 8 9 | resqrtcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 11 |  | simplrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑏  ∈  ℝ ) | 
						
							| 13 | 10 12 | remulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℝ ) | 
						
							| 14 | 4 13 | readdcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∈  ℝ ) | 
						
							| 15 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 16 | 15 | a1i | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  2  ∈  ℕ0 ) | 
						
							| 17 | 11 16 | nn0expcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑏 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 18 | 7 17 | nn0mulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  ∈  ℕ0 ) | 
						
							| 19 | 18 | nn0ge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 20 | 18 | nn0red | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 21 | 2 20 | addge02d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 0  ≤  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  ↔  1  ≤  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  +  1 ) ) ) | 
						
							| 22 | 19 21 | mpbid | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ≤  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  +  1 ) ) | 
						
							| 23 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 24 | 23 | a1i | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 25 |  | nn0cn | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℂ ) | 
						
							| 26 | 25 | ad2antrl | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  𝑎  ∈  ℂ ) | 
						
							| 27 | 26 | sqcld | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( 𝑎 ↑ 2 )  ∈  ℂ ) | 
						
							| 28 | 5 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 29 | 28 | nncnd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 30 |  | nn0cn | ⊢ ( 𝑏  ∈  ℕ0  →  𝑏  ∈  ℂ ) | 
						
							| 31 | 30 | ad2antll | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  𝑏  ∈  ℂ ) | 
						
							| 32 | 31 | sqcld | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( 𝑏 ↑ 2 )  ∈  ℂ ) | 
						
							| 33 | 29 32 | mulcld | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 34 |  | 1cnd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  1  ∈  ℂ ) | 
						
							| 35 | 27 33 34 | subaddd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  +  1 )  =  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 36 | 35 | biimpa | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  +  1 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝑎 ↑ 2 )  =  ( ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  +  1 ) ) | 
						
							| 38 | 22 24 37 | 3brtr4d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 1 ↑ 2 )  ≤  ( 𝑎 ↑ 2 ) ) | 
						
							| 39 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 40 | 39 | a1i | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  1 ) | 
						
							| 41 | 3 | nn0ge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  𝑎 ) | 
						
							| 42 | 2 4 40 41 | le2sqd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 1  ≤  𝑎  ↔  ( 1 ↑ 2 )  ≤  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 43 | 38 42 | mpbird | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ≤  𝑎 ) | 
						
							| 44 | 8 9 | sqrtge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 45 | 11 | nn0ge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  𝑏 ) | 
						
							| 46 | 10 12 44 45 | mulge0d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  0  ≤  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) | 
						
							| 47 | 4 13 | addge01d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 0  ≤  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ↔  𝑎  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 48 | 46 47 | mpbid | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  𝑎  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 49 | 2 4 14 43 48 | letrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 50 | 49 | adantrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 51 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 52 | 50 51 | breqtrrd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  ≤  𝐴 ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ≤  𝐴 ) ) | 
						
							| 54 | 53 | rexlimdvva | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  1  ≤  𝐴 ) ) | 
						
							| 55 | 54 | expimpd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  ≤  𝐴 ) ) | 
						
							| 56 | 1 55 | sylbid | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  →  1  ≤  𝐴 ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) )  →  1  ≤  𝐴 ) |