Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℝ ) |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
2
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ℕ0 ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 0 ∈ ℕ0 ) |
6 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
7 |
6
|
nncnd |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℂ ) |
8 |
7
|
sqrtcld |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
9 |
8
|
mul01d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( √ ‘ 𝐷 ) · 0 ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) = ( 1 + 0 ) ) |
11 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
12 |
10 11
|
eqtr2di |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) ) |
13 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
14 |
13
|
a1i |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 1 ↑ 2 ) = 1 ) |
15 |
|
sq0 |
⊢ ( 0 ↑ 2 ) = 0 |
16 |
15
|
oveq2i |
⊢ ( 𝐷 · ( 0 ↑ 2 ) ) = ( 𝐷 · 0 ) |
17 |
7
|
mul01d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 · 0 ) = 0 ) |
18 |
16 17
|
syl5eq |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐷 · ( 0 ↑ 2 ) ) = 0 ) |
19 |
14 18
|
oveq12d |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) = ( 1 − 0 ) ) |
20 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
21 |
19 20
|
eqtrdi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) = 1 ) |
22 |
|
oveq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑎 = 1 → ( 1 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↔ 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 ↑ 2 ) = ( 1 ↑ 2 ) ) |
25 |
24
|
oveq1d |
⊢ ( 𝑎 = 1 → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑎 = 1 → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
27 |
23 26
|
anbi12d |
⊢ ( 𝑎 = 1 → ( ( 1 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑏 = 0 → ( ( √ ‘ 𝐷 ) · 𝑏 ) = ( ( √ ‘ 𝐷 ) · 0 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑏 = 0 → ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑏 = 0 → ( 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ↔ 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) ) ) |
31 |
|
oveq1 |
⊢ ( 𝑏 = 0 → ( 𝑏 ↑ 2 ) = ( 0 ↑ 2 ) ) |
32 |
31
|
oveq2d |
⊢ ( 𝑏 = 0 → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 0 ↑ 2 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑏 = 0 → ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) ) |
34 |
33
|
eqeq1d |
⊢ ( 𝑏 = 0 → ( ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ↔ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) = 1 ) ) |
35 |
30 34
|
anbi12d |
⊢ ( 𝑏 = 0 → ( ( 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ↔ ( 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) ∧ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) = 1 ) ) ) |
36 |
27 35
|
rspc2ev |
⊢ ( ( 1 ∈ ℕ0 ∧ 0 ∈ ℕ0 ∧ ( 1 = ( 1 + ( ( √ ‘ 𝐷 ) · 0 ) ) ∧ ( ( 1 ↑ 2 ) − ( 𝐷 · ( 0 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 1 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
37 |
3 5 12 21 36
|
syl112anc |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 1 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) |
38 |
|
elpell1qr |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 1 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 1 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 1 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) ) |
39 |
1 37 38
|
mpbir2and |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ( Pell1QR ‘ 𝐷 ) ) |