Step |
Hyp |
Ref |
Expression |
1 |
|
pell1qrss14 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( Pell1QR ‘ 𝐷 ) ⊆ ( Pell14QR ‘ 𝐷 ) ) |
2 |
1
|
sselda |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) |
3 |
|
pell1qrge1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) → 1 ≤ 𝐴 ) |
4 |
2 3
|
jca |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝐴 ) ) |
5 |
|
1red |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 1 ∈ ℝ ) |
6 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
7 |
5 6
|
leloed |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 ≤ 𝐴 ↔ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) ) |
8 |
5 6
|
ltnled |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 < 𝐴 ↔ ¬ 𝐴 ≤ 1 ) ) |
9 |
8
|
biimpa |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ¬ 𝐴 ≤ 1 ) |
10 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
11 |
10
|
eqcomi |
⊢ 1 = ( 1 / 1 ) |
12 |
11
|
a1i |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 1 = ( 1 / 1 ) ) |
13 |
12
|
breq2d |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ( 𝐴 ≤ 1 ↔ 𝐴 ≤ ( 1 / 1 ) ) ) |
14 |
6
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
15 |
|
pell14qrgt0 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 0 < 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 0 < 𝐴 ) |
17 |
|
1red |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
18 |
|
0lt1 |
⊢ 0 < 1 |
19 |
18
|
a1i |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 0 < 1 ) |
20 |
|
lerec2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( 𝐴 ≤ ( 1 / 1 ) ↔ 1 ≤ ( 1 / 𝐴 ) ) ) |
21 |
14 16 17 19 20
|
syl22anc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ( 𝐴 ≤ ( 1 / 1 ) ↔ 1 ≤ ( 1 / 𝐴 ) ) ) |
22 |
13 21
|
bitrd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ( 𝐴 ≤ 1 ↔ 1 ≤ ( 1 / 𝐴 ) ) ) |
23 |
9 22
|
mtbid |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ¬ 1 ≤ ( 1 / 𝐴 ) ) |
24 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) ∧ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝐷 ∈ ( ℕ ∖ ◻NN ) ) |
25 |
|
pell1qrge1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) → 1 ≤ ( 1 / 𝐴 ) ) |
26 |
24 25
|
sylancom |
⊢ ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) ∧ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) → 1 ≤ ( 1 / 𝐴 ) ) |
27 |
23 26
|
mtand |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ¬ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) |
28 |
|
pell14qrdich |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
30 |
|
orel2 |
⊢ ( ¬ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) → ( ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
31 |
27 29 30
|
sylc |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) |
32 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 = 𝐴 ) → 1 = 𝐴 ) |
33 |
|
pell1qr1 |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 1 ∈ ( Pell1QR ‘ 𝐷 ) ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 = 𝐴 ) → 1 ∈ ( Pell1QR ‘ 𝐷 ) ) |
35 |
32 34
|
eqeltrrd |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 1 = 𝐴 ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) |
36 |
31 35
|
jaodan |
⊢ ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ ( 1 < 𝐴 ∨ 1 = 𝐴 ) ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) |
37 |
36
|
ex |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 1 < 𝐴 ∨ 1 = 𝐴 ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
38 |
7 37
|
sylbid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 ≤ 𝐴 → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) ) |
39 |
38
|
impr |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝐴 ) ) → 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) |
40 |
4 39
|
impbida |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 ≤ 𝐴 ) ) ) |