| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1qrss14 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1QR ‘ 𝐷 )  ⊆  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 2 | 1 | sselda | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 3 |  | pell1qrge1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) )  →  1  ≤  𝐴 ) | 
						
							| 4 | 2 3 | jca | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  ≤  𝐴 ) ) | 
						
							| 5 |  | 1red | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  1  ∈  ℝ ) | 
						
							| 6 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 5 6 | leloed | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  ≤  𝐴  ↔  ( 1  <  𝐴  ∨  1  =  𝐴 ) ) ) | 
						
							| 8 | 5 6 | ltnled | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  <  𝐴  ↔  ¬  𝐴  ≤  1 ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ¬  𝐴  ≤  1 ) | 
						
							| 10 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 11 | 10 | eqcomi | ⊢ 1  =  ( 1  /  1 ) | 
						
							| 12 | 11 | a1i | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  1  =  ( 1  /  1 ) ) | 
						
							| 13 | 12 | breq2d | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ( 𝐴  ≤  1  ↔  𝐴  ≤  ( 1  /  1 ) ) ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 15 |  | pell14qrgt0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  0  <  𝐴 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 17 |  | 1red | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 18 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  0  <  1 ) | 
						
							| 20 |  | lerec2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( 𝐴  ≤  ( 1  /  1 )  ↔  1  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 21 | 14 16 17 19 20 | syl22anc | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ( 𝐴  ≤  ( 1  /  1 )  ↔  1  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 22 | 13 21 | bitrd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ( 𝐴  ≤  1  ↔  1  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 23 | 9 22 | mtbid | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ¬  1  ≤  ( 1  /  𝐴 ) ) | 
						
							| 24 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  ∧  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) )  →  𝐷  ∈  ( ℕ  ∖  ◻NN ) ) | 
						
							| 25 |  | pell1qrge1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) )  →  1  ≤  ( 1  /  𝐴 ) ) | 
						
							| 26 | 24 25 | sylancom | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  ∧  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) )  →  1  ≤  ( 1  /  𝐴 ) ) | 
						
							| 27 | 23 26 | mtand | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ¬  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 28 |  | pell14qrdich | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 30 |  | orel2 | ⊢ ( ¬  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 )  →  ( ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 31 | 27 29 30 | sylc | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  <  𝐴 )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  =  𝐴 )  →  1  =  𝐴 ) | 
						
							| 33 |  | pell1qr1 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  1  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  =  𝐴 )  →  1  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 35 | 32 34 | eqeltrrd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  1  =  𝐴 )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 36 | 31 35 | jaodan | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  ( 1  <  𝐴  ∨  1  =  𝐴 ) )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 1  <  𝐴  ∨  1  =  𝐴 )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 38 | 7 37 | sylbid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  ≤  𝐴  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 39 | 38 | impr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  ≤  𝐴 ) )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 40 | 4 39 | impbida | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  ≤  𝐴 ) ) ) |