Metamath Proof Explorer


Theorem elpell1qr2

Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion elpell1qr2 D A Pell1QR D A Pell14QR D 1 A

Proof

Step Hyp Ref Expression
1 pell1qrss14 D Pell1QR D Pell14QR D
2 1 sselda D A Pell1QR D A Pell14QR D
3 pell1qrge1 D A Pell1QR D 1 A
4 2 3 jca D A Pell1QR D A Pell14QR D 1 A
5 1red D A Pell14QR D 1
6 pell14qrre D A Pell14QR D A
7 5 6 leloed D A Pell14QR D 1 A 1 < A 1 = A
8 5 6 ltnled D A Pell14QR D 1 < A ¬ A 1
9 8 biimpa D A Pell14QR D 1 < A ¬ A 1
10 1div1e1 1 1 = 1
11 10 eqcomi 1 = 1 1
12 11 a1i D A Pell14QR D 1 < A 1 = 1 1
13 12 breq2d D A Pell14QR D 1 < A A 1 A 1 1
14 6 adantr D A Pell14QR D 1 < A A
15 pell14qrgt0 D A Pell14QR D 0 < A
16 15 adantr D A Pell14QR D 1 < A 0 < A
17 1red D A Pell14QR D 1 < A 1
18 0lt1 0 < 1
19 18 a1i D A Pell14QR D 1 < A 0 < 1
20 lerec2 A 0 < A 1 0 < 1 A 1 1 1 1 A
21 14 16 17 19 20 syl22anc D A Pell14QR D 1 < A A 1 1 1 1 A
22 13 21 bitrd D A Pell14QR D 1 < A A 1 1 1 A
23 9 22 mtbid D A Pell14QR D 1 < A ¬ 1 1 A
24 simplll D A Pell14QR D 1 < A 1 A Pell1QR D D
25 pell1qrge1 D 1 A Pell1QR D 1 1 A
26 24 25 sylancom D A Pell14QR D 1 < A 1 A Pell1QR D 1 1 A
27 23 26 mtand D A Pell14QR D 1 < A ¬ 1 A Pell1QR D
28 pell14qrdich D A Pell14QR D A Pell1QR D 1 A Pell1QR D
29 28 adantr D A Pell14QR D 1 < A A Pell1QR D 1 A Pell1QR D
30 orel2 ¬ 1 A Pell1QR D A Pell1QR D 1 A Pell1QR D A Pell1QR D
31 27 29 30 sylc D A Pell14QR D 1 < A A Pell1QR D
32 simpr D A Pell14QR D 1 = A 1 = A
33 pell1qr1 D 1 Pell1QR D
34 33 ad2antrr D A Pell14QR D 1 = A 1 Pell1QR D
35 32 34 eqeltrrd D A Pell14QR D 1 = A A Pell1QR D
36 31 35 jaodan D A Pell14QR D 1 < A 1 = A A Pell1QR D
37 36 ex D A Pell14QR D 1 < A 1 = A A Pell1QR D
38 7 37 sylbid D A Pell14QR D 1 A A Pell1QR D
39 38 impr D A Pell14QR D 1 A A Pell1QR D
40 4 39 impbida D A Pell1QR D A Pell14QR D 1 A