Metamath Proof Explorer


Theorem elpell1qr2

Description: The first quadrant solutions are precisely the positive Pell solutions which are at least one. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion elpell1qr2 DAPell1QRDAPell14QRD1A

Proof

Step Hyp Ref Expression
1 pell1qrss14 DPell1QRDPell14QRD
2 1 sselda DAPell1QRDAPell14QRD
3 pell1qrge1 DAPell1QRD1A
4 2 3 jca DAPell1QRDAPell14QRD1A
5 1red DAPell14QRD1
6 pell14qrre DAPell14QRDA
7 5 6 leloed DAPell14QRD1A1<A1=A
8 5 6 ltnled DAPell14QRD1<A¬A1
9 8 biimpa DAPell14QRD1<A¬A1
10 1div1e1 11=1
11 10 eqcomi 1=11
12 11 a1i DAPell14QRD1<A1=11
13 12 breq2d DAPell14QRD1<AA1A11
14 6 adantr DAPell14QRD1<AA
15 pell14qrgt0 DAPell14QRD0<A
16 15 adantr DAPell14QRD1<A0<A
17 1red DAPell14QRD1<A1
18 0lt1 0<1
19 18 a1i DAPell14QRD1<A0<1
20 lerec2 A0<A10<1A1111A
21 14 16 17 19 20 syl22anc DAPell14QRD1<AA1111A
22 13 21 bitrd DAPell14QRD1<AA111A
23 9 22 mtbid DAPell14QRD1<A¬11A
24 simplll DAPell14QRD1<A1APell1QRDD
25 pell1qrge1 D1APell1QRD11A
26 24 25 sylancom DAPell14QRD1<A1APell1QRD11A
27 23 26 mtand DAPell14QRD1<A¬1APell1QRD
28 pell14qrdich DAPell14QRDAPell1QRD1APell1QRD
29 28 adantr DAPell14QRD1<AAPell1QRD1APell1QRD
30 orel2 ¬1APell1QRDAPell1QRD1APell1QRDAPell1QRD
31 27 29 30 sylc DAPell14QRD1<AAPell1QRD
32 simpr DAPell14QRD1=A1=A
33 pell1qr1 D1Pell1QRD
34 33 ad2antrr DAPell14QRD1=A1Pell1QRD
35 32 34 eqeltrrd DAPell14QRD1=AAPell1QRD
36 31 35 jaodan DAPell14QRD1<A1=AAPell1QRD
37 36 ex DAPell14QRD1<A1=AAPell1QRD
38 7 37 sylbid DAPell14QRD1AAPell1QRD
39 38 impr DAPell14QRD1AAPell1QRD
40 4 39 impbida DAPell1QRDAPell14QRD1A