Metamath Proof Explorer


Theorem pell1qr1

Description: 1 is a Pell solution and in the first quadrant as one. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1qr1 D1Pell1QRD

Proof

Step Hyp Ref Expression
1 1red D1
2 1nn0 10
3 2 a1i D10
4 0nn0 00
5 4 a1i D00
6 eldifi DD
7 6 nncnd DD
8 7 sqrtcld DD
9 8 mul01d DD0=0
10 9 oveq2d D1+D0=1+0
11 1p0e1 1+0=1
12 10 11 eqtr2di D1=1+D0
13 sq1 12=1
14 13 a1i D12=1
15 sq0 02=0
16 15 oveq2i D02=D0
17 7 mul01d DD0=0
18 16 17 eqtrid DD02=0
19 14 18 oveq12d D12D02=10
20 1m0e1 10=1
21 19 20 eqtrdi D12D02=1
22 oveq1 a=1a+Db=1+Db
23 22 eqeq2d a=11=a+Db1=1+Db
24 oveq1 a=1a2=12
25 24 oveq1d a=1a2Db2=12Db2
26 25 eqeq1d a=1a2Db2=112Db2=1
27 23 26 anbi12d a=11=a+Dba2Db2=11=1+Db12Db2=1
28 oveq2 b=0Db=D0
29 28 oveq2d b=01+Db=1+D0
30 29 eqeq2d b=01=1+Db1=1+D0
31 oveq1 b=0b2=02
32 31 oveq2d b=0Db2=D02
33 32 oveq2d b=012Db2=12D02
34 33 eqeq1d b=012Db2=112D02=1
35 30 34 anbi12d b=01=1+Db12Db2=11=1+D012D02=1
36 27 35 rspc2ev 10001=1+D012D02=1a0b01=a+Dba2Db2=1
37 3 5 12 21 36 syl112anc Da0b01=a+Dba2Db2=1
38 elpell1qr D1Pell1QRD1a0b01=a+Dba2Db2=1
39 1 37 38 mpbir2and D1Pell1QRD