| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1qrss14 |  |-  ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) | 
						
							| 2 | 1 | sselda |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 3 |  | pell1qrge1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> 1 <_ A ) | 
						
							| 4 | 2 3 | jca |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) | 
						
							| 5 |  | 1red |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 e. RR ) | 
						
							| 6 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 7 | 5 6 | leloed |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ A <-> ( 1 < A \/ 1 = A ) ) ) | 
						
							| 8 | 5 6 | ltnled |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 < A <-> -. A <_ 1 ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. A <_ 1 ) | 
						
							| 10 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 11 | 10 | eqcomi |  |-  1 = ( 1 / 1 ) | 
						
							| 12 | 11 | a1i |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 1 = ( 1 / 1 ) ) | 
						
							| 13 | 12 | breq2d |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ 1 <-> A <_ ( 1 / 1 ) ) ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> A e. RR ) | 
						
							| 15 |  | pell14qrgt0 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 < A ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 0 < A ) | 
						
							| 17 |  | 1red |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 1 e. RR ) | 
						
							| 18 |  | 0lt1 |  |-  0 < 1 | 
						
							| 19 | 18 | a1i |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 0 < 1 ) | 
						
							| 20 |  | lerec2 |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( A <_ ( 1 / 1 ) <-> 1 <_ ( 1 / A ) ) ) | 
						
							| 21 | 14 16 17 19 20 | syl22anc |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ ( 1 / 1 ) <-> 1 <_ ( 1 / A ) ) ) | 
						
							| 22 | 13 21 | bitrd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ 1 <-> 1 <_ ( 1 / A ) ) ) | 
						
							| 23 | 9 22 | mtbid |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. 1 <_ ( 1 / A ) ) | 
						
							| 24 |  | simplll |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> D e. ( NN \ []NN ) ) | 
						
							| 25 |  | pell1qrge1 |  |-  ( ( D e. ( NN \ []NN ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> 1 <_ ( 1 / A ) ) | 
						
							| 26 | 24 25 | sylancom |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> 1 <_ ( 1 / A ) ) | 
						
							| 27 | 23 26 | mtand |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. ( 1 / A ) e. ( Pell1QR ` D ) ) | 
						
							| 28 |  | pell14qrdich |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) | 
						
							| 30 |  | orel2 |  |-  ( -. ( 1 / A ) e. ( Pell1QR ` D ) -> ( ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) -> A e. ( Pell1QR ` D ) ) ) | 
						
							| 31 | 27 29 30 | sylc |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> A e. ( Pell1QR ` D ) ) | 
						
							| 32 |  | simpr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> 1 = A ) | 
						
							| 33 |  | pell1qr1 |  |-  ( D e. ( NN \ []NN ) -> 1 e. ( Pell1QR ` D ) ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> 1 e. ( Pell1QR ` D ) ) | 
						
							| 35 | 32 34 | eqeltrrd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> A e. ( Pell1QR ` D ) ) | 
						
							| 36 | 31 35 | jaodan |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( 1 < A \/ 1 = A ) ) -> A e. ( Pell1QR ` D ) ) | 
						
							| 37 | 36 | ex |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( 1 < A \/ 1 = A ) -> A e. ( Pell1QR ` D ) ) ) | 
						
							| 38 | 7 37 | sylbid |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ A -> A e. ( Pell1QR ` D ) ) ) | 
						
							| 39 | 38 | impr |  |-  ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) -> A e. ( Pell1QR ` D ) ) | 
						
							| 40 | 4 39 | impbida |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) |