Step |
Hyp |
Ref |
Expression |
1 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
2 |
1
|
sselda |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> A e. ( Pell14QR ` D ) ) |
3 |
|
pell1qrge1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> 1 <_ A ) |
4 |
2 3
|
jca |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) |
5 |
|
1red |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 1 e. RR ) |
6 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
7 |
5 6
|
leloed |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ A <-> ( 1 < A \/ 1 = A ) ) ) |
8 |
5 6
|
ltnled |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 < A <-> -. A <_ 1 ) ) |
9 |
8
|
biimpa |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. A <_ 1 ) |
10 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
11 |
10
|
eqcomi |
|- 1 = ( 1 / 1 ) |
12 |
11
|
a1i |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 1 = ( 1 / 1 ) ) |
13 |
12
|
breq2d |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ 1 <-> A <_ ( 1 / 1 ) ) ) |
14 |
6
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> A e. RR ) |
15 |
|
pell14qrgt0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 < A ) |
16 |
15
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 0 < A ) |
17 |
|
1red |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 1 e. RR ) |
18 |
|
0lt1 |
|- 0 < 1 |
19 |
18
|
a1i |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> 0 < 1 ) |
20 |
|
lerec2 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( A <_ ( 1 / 1 ) <-> 1 <_ ( 1 / A ) ) ) |
21 |
14 16 17 19 20
|
syl22anc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ ( 1 / 1 ) <-> 1 <_ ( 1 / A ) ) ) |
22 |
13 21
|
bitrd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A <_ 1 <-> 1 <_ ( 1 / A ) ) ) |
23 |
9 22
|
mtbid |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. 1 <_ ( 1 / A ) ) |
24 |
|
simplll |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> D e. ( NN \ []NN ) ) |
25 |
|
pell1qrge1 |
|- ( ( D e. ( NN \ []NN ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> 1 <_ ( 1 / A ) ) |
26 |
24 25
|
sylancom |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) /\ ( 1 / A ) e. ( Pell1QR ` D ) ) -> 1 <_ ( 1 / A ) ) |
27 |
23 26
|
mtand |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> -. ( 1 / A ) e. ( Pell1QR ` D ) ) |
28 |
|
pell14qrdich |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) |
29 |
28
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) |
30 |
|
orel2 |
|- ( -. ( 1 / A ) e. ( Pell1QR ` D ) -> ( ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) -> A e. ( Pell1QR ` D ) ) ) |
31 |
27 29 30
|
sylc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 < A ) -> A e. ( Pell1QR ` D ) ) |
32 |
|
simpr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> 1 = A ) |
33 |
|
pell1qr1 |
|- ( D e. ( NN \ []NN ) -> 1 e. ( Pell1QR ` D ) ) |
34 |
33
|
ad2antrr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> 1 e. ( Pell1QR ` D ) ) |
35 |
32 34
|
eqeltrrd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ 1 = A ) -> A e. ( Pell1QR ` D ) ) |
36 |
31 35
|
jaodan |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( 1 < A \/ 1 = A ) ) -> A e. ( Pell1QR ` D ) ) |
37 |
36
|
ex |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( 1 < A \/ 1 = A ) -> A e. ( Pell1QR ` D ) ) ) |
38 |
7 37
|
sylbid |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 <_ A -> A e. ( Pell1QR ` D ) ) ) |
39 |
38
|
impr |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) -> A e. ( Pell1QR ` D ) ) |
40 |
4 39
|
impbida |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) |