| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnrp |  |-  ( D e. NN -> D e. RR+ ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> D e. RR+ ) | 
						
							| 3 |  | 1rp |  |-  1 e. RR+ | 
						
							| 4 | 3 | a1i |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 e. RR+ ) | 
						
							| 5 | 2 4 | rpaddcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D + 1 ) e. RR+ ) | 
						
							| 6 | 5 | rpsqrtcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) | 
						
							| 7 | 6 | rpred |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` ( D + 1 ) ) e. RR ) | 
						
							| 8 | 2 | rpsqrtcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 9 | 8 | rpred |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. RR ) | 
						
							| 10 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> A e. RR ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> A e. RR ) | 
						
							| 13 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> B e. RR ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> B e. RR ) | 
						
							| 16 | 9 15 | remulcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. B ) e. RR ) | 
						
							| 17 | 2 | rpred |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> D e. RR ) | 
						
							| 18 |  | 1re |  |-  1 e. RR | 
						
							| 19 | 18 | a1i |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 e. RR ) | 
						
							| 20 | 15 | resqcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( B ^ 2 ) e. RR ) | 
						
							| 21 | 19 20 | resubcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 - ( B ^ 2 ) ) e. RR ) | 
						
							| 22 | 17 21 | remulcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. ( 1 - ( B ^ 2 ) ) ) e. RR ) | 
						
							| 23 |  | 0red |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 0 e. RR ) | 
						
							| 24 | 17 23 | remulcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. 0 ) e. RR ) | 
						
							| 25 | 12 | resqcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( A ^ 2 ) e. RR ) | 
						
							| 26 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 27 | 26 | a1i |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 ^ 2 ) = 1 ) | 
						
							| 28 |  | nnge1 |  |-  ( B e. NN -> 1 <_ B ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B e. NN ) -> 1 <_ B ) | 
						
							| 30 |  | simplrl |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> 1 < ( A + ( ( sqrt ` D ) x. B ) ) ) | 
						
							| 31 |  | oveq1 |  |-  ( B = 0 -> ( B ^ 2 ) = ( 0 ^ 2 ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( B ^ 2 ) = ( 0 ^ 2 ) ) | 
						
							| 33 |  | sq0 |  |-  ( 0 ^ 2 ) = 0 | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( B ^ 2 ) = 0 ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( D x. ( B ^ 2 ) ) = ( D x. 0 ) ) | 
						
							| 36 | 2 | rpcnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> D e. CC ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> D e. CC ) | 
						
							| 38 | 37 | mul01d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( D x. 0 ) = 0 ) | 
						
							| 39 | 35 38 | eqtrd |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( D x. ( B ^ 2 ) ) = 0 ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = ( ( A ^ 2 ) - 0 ) ) | 
						
							| 41 |  | simplrr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) | 
						
							| 42 | 12 | recnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> A e. CC ) | 
						
							| 43 | 42 | sqcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( A ^ 2 ) e. CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( A ^ 2 ) e. CC ) | 
						
							| 45 | 44 | subid1d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( A ^ 2 ) - 0 ) = ( A ^ 2 ) ) | 
						
							| 46 | 40 41 45 | 3eqtr3d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> 1 = ( A ^ 2 ) ) | 
						
							| 47 | 26 46 | eqtr2id |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( A ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 48 |  | nn0ge0 |  |-  ( A e. NN0 -> 0 <_ A ) | 
						
							| 49 | 48 | adantr |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> 0 <_ A ) | 
						
							| 50 | 49 | ad2antlr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 0 <_ A ) | 
						
							| 51 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 52 | 51 | a1i |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 0 <_ 1 ) | 
						
							| 53 |  | sq11 |  |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( A ^ 2 ) = ( 1 ^ 2 ) <-> A = 1 ) ) | 
						
							| 54 | 12 50 19 52 53 | syl22anc |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) = ( 1 ^ 2 ) <-> A = 1 ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( A ^ 2 ) = ( 1 ^ 2 ) <-> A = 1 ) ) | 
						
							| 56 | 47 55 | mpbid |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> A = 1 ) | 
						
							| 57 |  | simpr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> B = 0 ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( sqrt ` D ) x. B ) = ( ( sqrt ` D ) x. 0 ) ) | 
						
							| 59 | 8 | rpcnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( sqrt ` D ) e. CC ) | 
						
							| 61 | 60 | mul01d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( sqrt ` D ) x. 0 ) = 0 ) | 
						
							| 62 | 58 61 | eqtrd |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( ( sqrt ` D ) x. B ) = 0 ) | 
						
							| 63 | 56 62 | oveq12d |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = ( 1 + 0 ) ) | 
						
							| 64 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 65 | 63 64 | eqtrdi |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = 1 ) | 
						
							| 66 | 30 65 | breqtrd |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> 1 < 1 ) | 
						
							| 67 | 18 | ltnri |  |-  -. 1 < 1 | 
						
							| 68 |  | pm2.24 |  |-  ( 1 < 1 -> ( -. 1 < 1 -> 1 <_ B ) ) | 
						
							| 69 | 66 67 68 | mpisyl |  |-  ( ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) /\ B = 0 ) -> 1 <_ B ) | 
						
							| 70 |  | simplrr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> B e. NN0 ) | 
						
							| 71 |  | elnn0 |  |-  ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) | 
						
							| 72 | 70 71 | sylib |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( B e. NN \/ B = 0 ) ) | 
						
							| 73 | 29 69 72 | mpjaodan |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 <_ B ) | 
						
							| 74 |  | nn0ge0 |  |-  ( B e. NN0 -> 0 <_ B ) | 
						
							| 75 | 74 | adantl |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> 0 <_ B ) | 
						
							| 76 | 75 | ad2antlr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 0 <_ B ) | 
						
							| 77 | 19 15 52 76 | le2sqd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 <_ B <-> ( 1 ^ 2 ) <_ ( B ^ 2 ) ) ) | 
						
							| 78 | 73 77 | mpbid |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 ^ 2 ) <_ ( B ^ 2 ) ) | 
						
							| 79 | 27 78 | eqbrtrrd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 <_ ( B ^ 2 ) ) | 
						
							| 80 | 19 20 | suble0d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( 1 - ( B ^ 2 ) ) <_ 0 <-> 1 <_ ( B ^ 2 ) ) ) | 
						
							| 81 | 79 80 | mpbird |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 - ( B ^ 2 ) ) <_ 0 ) | 
						
							| 82 | 21 23 2 | lemul2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( 1 - ( B ^ 2 ) ) <_ 0 <-> ( D x. ( 1 - ( B ^ 2 ) ) ) <_ ( D x. 0 ) ) ) | 
						
							| 83 | 81 82 | mpbid |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. ( 1 - ( B ^ 2 ) ) ) <_ ( D x. 0 ) ) | 
						
							| 84 | 22 24 25 83 | leadd2dd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) + ( D x. ( 1 - ( B ^ 2 ) ) ) ) <_ ( ( A ^ 2 ) + ( D x. 0 ) ) ) | 
						
							| 85 | 5 | rpcnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D + 1 ) e. CC ) | 
						
							| 86 | 85 | sqsqrtd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) = ( D + 1 ) ) | 
						
							| 87 |  | simprr |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) | 
						
							| 88 | 87 | eqcomd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 = ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) | 
						
							| 89 | 88 | oveq2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D + 1 ) = ( D + ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) ) | 
						
							| 90 | 15 | recnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> B e. CC ) | 
						
							| 91 | 90 | sqcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( B ^ 2 ) e. CC ) | 
						
							| 92 | 36 91 | mulcld |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. ( B ^ 2 ) ) e. CC ) | 
						
							| 93 | 36 43 92 | addsub12d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D + ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) = ( ( A ^ 2 ) + ( D - ( D x. ( B ^ 2 ) ) ) ) ) | 
						
							| 94 | 19 | recnd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 1 e. CC ) | 
						
							| 95 | 36 94 91 | subdid |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. ( 1 - ( B ^ 2 ) ) ) = ( ( D x. 1 ) - ( D x. ( B ^ 2 ) ) ) ) | 
						
							| 96 | 36 | mulridd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. 1 ) = D ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( D x. 1 ) - ( D x. ( B ^ 2 ) ) ) = ( D - ( D x. ( B ^ 2 ) ) ) ) | 
						
							| 98 | 95 97 | eqtr2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D - ( D x. ( B ^ 2 ) ) ) = ( D x. ( 1 - ( B ^ 2 ) ) ) ) | 
						
							| 99 | 98 | oveq2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) + ( D - ( D x. ( B ^ 2 ) ) ) ) = ( ( A ^ 2 ) + ( D x. ( 1 - ( B ^ 2 ) ) ) ) ) | 
						
							| 100 | 93 99 | eqtrd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D + ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) = ( ( A ^ 2 ) + ( D x. ( 1 - ( B ^ 2 ) ) ) ) ) | 
						
							| 101 | 86 89 100 | 3eqtrd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) = ( ( A ^ 2 ) + ( D x. ( 1 - ( B ^ 2 ) ) ) ) ) | 
						
							| 102 | 36 | mul01d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( D x. 0 ) = 0 ) | 
						
							| 103 | 102 | oveq2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) + ( D x. 0 ) ) = ( ( A ^ 2 ) + 0 ) ) | 
						
							| 104 | 43 | addridd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( A ^ 2 ) + 0 ) = ( A ^ 2 ) ) | 
						
							| 105 | 103 104 | eqtr2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( A ^ 2 ) = ( ( A ^ 2 ) + ( D x. 0 ) ) ) | 
						
							| 106 | 84 101 105 | 3brtr4d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) <_ ( A ^ 2 ) ) | 
						
							| 107 | 6 | rpge0d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> 0 <_ ( sqrt ` ( D + 1 ) ) ) | 
						
							| 108 | 7 12 107 50 | le2sqd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) <_ A <-> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) <_ ( A ^ 2 ) ) ) | 
						
							| 109 | 106 108 | mpbird |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` ( D + 1 ) ) <_ A ) | 
						
							| 110 | 59 | mulridd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. 1 ) = ( sqrt ` D ) ) | 
						
							| 111 | 19 15 8 | lemul2d |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( 1 <_ B <-> ( ( sqrt ` D ) x. 1 ) <_ ( ( sqrt ` D ) x. B ) ) ) | 
						
							| 112 | 73 111 | mpbid |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. 1 ) <_ ( ( sqrt ` D ) x. B ) ) | 
						
							| 113 | 110 112 | eqbrtrrd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) <_ ( ( sqrt ` D ) x. B ) ) | 
						
							| 114 | 7 9 12 16 109 113 | le2addd |  |-  ( ( ( D e. NN /\ ( A e. NN0 /\ B e. NN0 ) ) /\ ( 1 < ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( A + ( ( sqrt ` D ) x. B ) ) ) |