| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1qr |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( D e. ( NN \ []NN ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 3 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 4 | 3 | ad4antr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> D e. NN ) | 
						
							| 5 |  | simplr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a e. NN0 /\ b e. NN0 ) ) | 
						
							| 6 |  | simp-4r |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 < A ) | 
						
							| 7 |  | simprl |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 8 | 6 7 | breqtrd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 < ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 9 |  | simprr |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) | 
						
							| 10 |  | pell1qrgaplem |  |-  ( ( ( D e. NN /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( 1 < ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 11 | 4 5 8 9 10 | syl22anc |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( a + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 12 | 11 7 | breqtrrd |  |-  ( ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) | 
						
							| 13 | 12 | ex |  |-  ( ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) | 
						
							| 14 | 13 | rexlimdvva |  |-  ( ( ( D e. ( NN \ []NN ) /\ 1 < A ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) | 
						
							| 15 | 14 | expimpd |  |-  ( ( D e. ( NN \ []NN ) /\ 1 < A ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) | 
						
							| 16 | 2 15 | sylbid |  |-  ( ( D e. ( NN \ []NN ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) | 
						
							| 17 | 16 | ex |  |-  ( D e. ( NN \ []NN ) -> ( 1 < A -> ( A e. ( Pell1QR ` D ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) ) | 
						
							| 18 | 17 | com23 |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) -> ( 1 < A -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) ) ) | 
						
							| 19 | 18 | 3imp |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) |