| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 2 |  | 1re |  |-  1 e. RR | 
						
							| 3 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 4 |  | ltle |  |-  ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 < A -> 1 <_ A ) ) | 
						
							| 6 | 5 | 3impia |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ A ) | 
						
							| 7 |  | elpell1qr2 |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) | 
						
							| 9 | 1 6 8 | mpbir2and |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. ( Pell1QR ` D ) ) | 
						
							| 10 |  | pell1qrgap |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) | 
						
							| 11 | 9 10 | syld3an2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) |