| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) ) | 
						
							| 2 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 3 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | ltle | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 1  <  𝐴  →  1  ≤  𝐴 ) ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  <  𝐴  →  1  ≤  𝐴 ) ) | 
						
							| 6 | 5 | 3impia | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  ≤  𝐴 ) | 
						
							| 7 |  | elpell1qr2 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  ≤  𝐴 ) ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  ≤  𝐴 ) ) ) | 
						
							| 9 | 1 6 8 | mpbir2and | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) | 
						
							| 10 |  | pell1qrgap | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) | 
						
							| 11 | 9 10 | syld3an2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) |