| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  2  ∈  ℝ ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐷  ∈  ℕ ) | 
						
							| 5 | 4 | nnrpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐷  ∈  ℝ+ ) | 
						
							| 6 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  ∈  ℝ+ ) | 
						
							| 8 | 5 7 | rpaddcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 𝐷  +  1 )  ∈  ℝ+ ) | 
						
							| 9 | 8 | rpsqrtcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ+ ) | 
						
							| 10 | 9 | rpred | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ ) | 
						
							| 11 | 5 | rpsqrtcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 12 | 11 | rpred | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 13 | 10 12 | readdcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ∈  ℝ ) | 
						
							| 14 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 16 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 17 |  | 1red | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  ∈  ℝ ) | 
						
							| 18 | 4 | nnred | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐷  ∈  ℝ ) | 
						
							| 19 |  | peano2re | ⊢ ( 𝐷  ∈  ℝ  →  ( 𝐷  +  1 )  ∈  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 𝐷  +  1 )  ∈  ℝ ) | 
						
							| 21 | 4 | nnge1d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  ≤  𝐷 ) | 
						
							| 22 | 18 | ltp1d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐷  <  ( 𝐷  +  1 ) ) | 
						
							| 23 | 17 18 20 21 22 | lelttrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  <  ( 𝐷  +  1 ) ) | 
						
							| 24 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 26 | 4 | nncnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  𝐷  ∈  ℂ ) | 
						
							| 27 |  | peano2cn | ⊢ ( 𝐷  ∈  ℂ  →  ( 𝐷  +  1 )  ∈  ℂ ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 𝐷  +  1 )  ∈  ℂ ) | 
						
							| 29 | 28 | sqsqrtd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 )  =  ( 𝐷  +  1 ) ) | 
						
							| 30 | 23 25 29 | 3brtr4d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1 ↑ 2 )  <  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 ) ) | 
						
							| 31 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  0  ≤  1 ) | 
						
							| 33 | 9 | rpge0d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  0  ≤  ( √ ‘ ( 𝐷  +  1 ) ) ) | 
						
							| 34 | 17 10 32 33 | lt2sqd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1  <  ( √ ‘ ( 𝐷  +  1 ) )  ↔  ( 1 ↑ 2 )  <  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 ) ) ) | 
						
							| 35 | 30 34 | mpbird | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  <  ( √ ‘ ( 𝐷  +  1 ) ) ) | 
						
							| 36 | 26 | sqsqrtd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 37 | 21 25 36 | 3brtr4d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1 ↑ 2 )  ≤  ( ( √ ‘ 𝐷 ) ↑ 2 ) ) | 
						
							| 38 | 11 | rpge0d | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  0  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 39 | 17 12 32 38 | le2sqd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1  ≤  ( √ ‘ 𝐷 )  ↔  ( 1 ↑ 2 )  ≤  ( ( √ ‘ 𝐷 ) ↑ 2 ) ) ) | 
						
							| 40 | 37 39 | mpbird | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  1  ≤  ( √ ‘ 𝐷 ) ) | 
						
							| 41 | 17 17 10 12 35 40 | ltleaddd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( 1  +  1 )  <  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) ) ) | 
						
							| 42 | 16 41 | eqbrtrid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  2  <  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) ) ) | 
						
							| 43 |  | pell14qrgap | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) | 
						
							| 44 | 2 13 15 42 43 | ltletrd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  2  <  𝐴 ) |