Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
1
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 2 ∈ ℝ ) |
3 |
|
eldifi |
⊢ ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐷 ∈ ℕ ) |
5 |
4
|
nnrpd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐷 ∈ ℝ+ ) |
6 |
|
1rp |
⊢ 1 ∈ ℝ+ |
7 |
6
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 ∈ ℝ+ ) |
8 |
5 7
|
rpaddcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 𝐷 + 1 ) ∈ ℝ+ ) |
9 |
8
|
rpsqrtcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ+ ) |
10 |
9
|
rpred |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( √ ‘ ( 𝐷 + 1 ) ) ∈ ℝ ) |
11 |
5
|
rpsqrtcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
12 |
11
|
rpred |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( √ ‘ 𝐷 ) ∈ ℝ ) |
13 |
10 12
|
readdcld |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ∈ ℝ ) |
14 |
|
pell14qrre |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐴 ∈ ℝ ) |
16 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
17 |
|
1red |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 ∈ ℝ ) |
18 |
4
|
nnred |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐷 ∈ ℝ ) |
19 |
|
peano2re |
⊢ ( 𝐷 ∈ ℝ → ( 𝐷 + 1 ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 𝐷 + 1 ) ∈ ℝ ) |
21 |
4
|
nnge1d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 ≤ 𝐷 ) |
22 |
18
|
ltp1d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐷 < ( 𝐷 + 1 ) ) |
23 |
17 18 20 21 22
|
lelttrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 < ( 𝐷 + 1 ) ) |
24 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
25 |
24
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 ↑ 2 ) = 1 ) |
26 |
4
|
nncnd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 𝐷 ∈ ℂ ) |
27 |
|
peano2cn |
⊢ ( 𝐷 ∈ ℂ → ( 𝐷 + 1 ) ∈ ℂ ) |
28 |
26 27
|
syl |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 𝐷 + 1 ) ∈ ℂ ) |
29 |
28
|
sqsqrtd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) ↑ 2 ) = ( 𝐷 + 1 ) ) |
30 |
23 25 29
|
3brtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 ↑ 2 ) < ( ( √ ‘ ( 𝐷 + 1 ) ) ↑ 2 ) ) |
31 |
|
0le1 |
⊢ 0 ≤ 1 |
32 |
31
|
a1i |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 0 ≤ 1 ) |
33 |
9
|
rpge0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 0 ≤ ( √ ‘ ( 𝐷 + 1 ) ) ) |
34 |
17 10 32 33
|
lt2sqd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 < ( √ ‘ ( 𝐷 + 1 ) ) ↔ ( 1 ↑ 2 ) < ( ( √ ‘ ( 𝐷 + 1 ) ) ↑ 2 ) ) ) |
35 |
30 34
|
mpbird |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 < ( √ ‘ ( 𝐷 + 1 ) ) ) |
36 |
26
|
sqsqrtd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 ) |
37 |
21 25 36
|
3brtr4d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 ↑ 2 ) ≤ ( ( √ ‘ 𝐷 ) ↑ 2 ) ) |
38 |
11
|
rpge0d |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 0 ≤ ( √ ‘ 𝐷 ) ) |
39 |
17 12 32 38
|
le2sqd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 ≤ ( √ ‘ 𝐷 ) ↔ ( 1 ↑ 2 ) ≤ ( ( √ ‘ 𝐷 ) ↑ 2 ) ) ) |
40 |
37 39
|
mpbird |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 1 ≤ ( √ ‘ 𝐷 ) ) |
41 |
17 17 10 12 35 40
|
ltleaddd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( 1 + 1 ) < ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ) |
42 |
16 41
|
eqbrtrid |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 2 < ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ) |
43 |
|
pell14qrgap |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → ( ( √ ‘ ( 𝐷 + 1 ) ) + ( √ ‘ 𝐷 ) ) ≤ 𝐴 ) |
44 |
2 13 15 42 43
|
ltletrd |
⊢ ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ∧ 1 < 𝐴 ) → 2 < 𝐴 ) |