| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐷  ∈  ℕ ) | 
						
							| 5 | 4 | nnrpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐷  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpsqrtcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 7 | 6 | rpred | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 8 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℝ ) | 
						
							| 10 | 7 9 | remulcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( √ ‘ 𝐷 )  ·  𝐵 )  ∈  ℝ ) | 
						
							| 11 | 2 10 | readdcld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ℝ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ℝ ) | 
						
							| 13 |  | simpl2 | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  𝐵  ∈  ℕ0 ) | 
						
							| 15 |  | eqidd | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ↔  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 22 | 18 21 | anbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑏  =  𝐵  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  =  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ↔  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏 ↑ 2 )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 29 | 28 | eqeq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1  ↔  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 30 | 25 29 | anbi12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  ↔  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 31 | 22 30 | rspc2ev | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0  ∧  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 32 | 13 14 15 16 31 | syl112anc | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 33 |  | elpell1qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 34 | 33 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 36 | 12 32 35 | mpbir2and | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∈  ( Pell1QR ‘ 𝐷 ) ) |