| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re |  |-  ( A e. NN0 -> A e. RR ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> A e. RR ) | 
						
							| 3 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. NN ) | 
						
							| 5 | 4 | nnrpd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. RR+ ) | 
						
							| 6 | 5 | rpsqrtcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 7 | 6 | rpred |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR ) | 
						
							| 8 |  | nn0re |  |-  ( B e. NN0 -> B e. RR ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> B e. RR ) | 
						
							| 10 | 7 9 | remulcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( sqrt ` D ) x. B ) e. RR ) | 
						
							| 11 | 2 10 | readdcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) | 
						
							| 13 |  | simpl2 |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> A e. NN0 ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> B e. NN0 ) | 
						
							| 15 |  | eqidd |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) | 
						
							| 16 |  | simpr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) | 
						
							| 17 |  | oveq1 |  |-  ( a = A -> ( a + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) | 
						
							| 18 | 17 | eqeq2d |  |-  ( a = A -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( a = A -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( a = A -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 22 | 18 21 | anbi12d |  |-  ( a = A -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( b = B -> ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. B ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( b = B -> ( A + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( b = B -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) ) | 
						
							| 26 |  | oveq1 |  |-  ( b = B -> ( b ^ 2 ) = ( B ^ 2 ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( b = B -> ( D x. ( b ^ 2 ) ) = ( D x. ( B ^ 2 ) ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( b = B -> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) | 
						
							| 29 | 28 | eqeq1d |  |-  ( b = B -> ( ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) | 
						
							| 30 | 25 29 | anbi12d |  |-  ( b = B -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) ) | 
						
							| 31 | 22 30 | rspc2ev |  |-  ( ( A e. NN0 /\ B e. NN0 /\ ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 32 | 13 14 15 16 31 | syl112anc |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) | 
						
							| 33 |  | elpell1qr |  |-  ( D e. ( NN \ []NN ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 34 | 33 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) | 
						
							| 36 | 12 32 35 | mpbir2and |  |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) ) |