| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 2 |
1
|
3ad2ant2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> A e. RR ) |
| 3 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. NN ) |
| 5 |
4
|
nnrpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. RR+ ) |
| 6 |
5
|
rpsqrtcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR+ ) |
| 7 |
6
|
rpred |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR ) |
| 8 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> B e. RR ) |
| 10 |
7 9
|
remulcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( sqrt ` D ) x. B ) e. RR ) |
| 11 |
2 10
|
readdcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) |
| 12 |
11
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) |
| 13 |
|
simpl2 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> A e. NN0 ) |
| 14 |
|
simpl3 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> B e. NN0 ) |
| 15 |
|
eqidd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) |
| 16 |
|
simpr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) |
| 17 |
|
oveq1 |
|- ( a = A -> ( a + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) |
| 18 |
17
|
eqeq2d |
|- ( a = A -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) ) |
| 19 |
|
oveq1 |
|- ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) ) |
| 20 |
19
|
oveq1d |
|- ( a = A -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 21 |
20
|
eqeq1d |
|- ( a = A -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 22 |
18 21
|
anbi12d |
|- ( a = A -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 23 |
|
oveq2 |
|- ( b = B -> ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. B ) ) |
| 24 |
23
|
oveq2d |
|- ( b = B -> ( A + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) |
| 25 |
24
|
eqeq2d |
|- ( b = B -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) ) |
| 26 |
|
oveq1 |
|- ( b = B -> ( b ^ 2 ) = ( B ^ 2 ) ) |
| 27 |
26
|
oveq2d |
|- ( b = B -> ( D x. ( b ^ 2 ) ) = ( D x. ( B ^ 2 ) ) ) |
| 28 |
27
|
oveq2d |
|- ( b = B -> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) |
| 29 |
28
|
eqeq1d |
|- ( b = B -> ( ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) |
| 30 |
25 29
|
anbi12d |
|- ( b = B -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) ) |
| 31 |
22 30
|
rspc2ev |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 32 |
13 14 15 16 31
|
syl112anc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 33 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 35 |
34
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 36 |
12 32 35
|
mpbir2and |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) ) |