Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
1
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 e. RR ) |
3 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
4 |
3
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. NN ) |
5 |
4
|
nnrpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR+ ) |
6 |
|
1rp |
|- 1 e. RR+ |
7 |
6
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR+ ) |
8 |
5 7
|
rpaddcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR+ ) |
9 |
8
|
rpsqrtcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) |
10 |
9
|
rpred |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR ) |
11 |
5
|
rpsqrtcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR+ ) |
12 |
11
|
rpred |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR ) |
13 |
10 12
|
readdcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) |
14 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
15 |
14
|
3adant3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. RR ) |
16 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
17 |
|
1red |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR ) |
18 |
4
|
nnred |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR ) |
19 |
|
peano2re |
|- ( D e. RR -> ( D + 1 ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR ) |
21 |
4
|
nnge1d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ D ) |
22 |
18
|
ltp1d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D < ( D + 1 ) ) |
23 |
17 18 20 21 22
|
lelttrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( D + 1 ) ) |
24 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
25 |
24
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) = 1 ) |
26 |
4
|
nncnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. CC ) |
27 |
|
peano2cn |
|- ( D e. CC -> ( D + 1 ) e. CC ) |
28 |
26 27
|
syl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. CC ) |
29 |
28
|
sqsqrtd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) = ( D + 1 ) ) |
30 |
23 25 29
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) ) |
31 |
|
0le1 |
|- 0 <_ 1 |
32 |
31
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ 1 ) |
33 |
9
|
rpge0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` ( D + 1 ) ) ) |
34 |
17 10 32 33
|
lt2sqd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 < ( sqrt ` ( D + 1 ) ) <-> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) ) ) |
35 |
30 34
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( sqrt ` ( D + 1 ) ) ) |
36 |
26
|
sqsqrtd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
37 |
21 25 36
|
3brtr4d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) |
38 |
11
|
rpge0d |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` D ) ) |
39 |
17 12 32 38
|
le2sqd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 <_ ( sqrt ` D ) <-> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) ) |
40 |
37 39
|
mpbird |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ ( sqrt ` D ) ) |
41 |
17 17 10 12 35 40
|
ltleaddd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 + 1 ) < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) |
42 |
16 41
|
eqbrtrid |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) |
43 |
|
pell14qrgap |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) |
44 |
2 13 15 42 43
|
ltletrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < A ) |