| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 e. RR ) | 
						
							| 3 |  | eldifi |  |-  ( D e. ( NN \ []NN ) -> D e. NN ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. NN ) | 
						
							| 5 | 4 | nnrpd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR+ ) | 
						
							| 6 |  | 1rp |  |-  1 e. RR+ | 
						
							| 7 | 6 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR+ ) | 
						
							| 8 | 5 7 | rpaddcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR+ ) | 
						
							| 9 | 8 | rpsqrtcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) | 
						
							| 10 | 9 | rpred |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR ) | 
						
							| 11 | 5 | rpsqrtcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR+ ) | 
						
							| 12 | 11 | rpred |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR ) | 
						
							| 13 | 10 12 | readdcld |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) | 
						
							| 14 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 15 | 14 | 3adant3 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. RR ) | 
						
							| 16 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 17 |  | 1red |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR ) | 
						
							| 18 | 4 | nnred |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR ) | 
						
							| 19 |  | peano2re |  |-  ( D e. RR -> ( D + 1 ) e. RR ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR ) | 
						
							| 21 | 4 | nnge1d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ D ) | 
						
							| 22 | 18 | ltp1d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D < ( D + 1 ) ) | 
						
							| 23 | 17 18 20 21 22 | lelttrd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( D + 1 ) ) | 
						
							| 24 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 25 | 24 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) = 1 ) | 
						
							| 26 | 4 | nncnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. CC ) | 
						
							| 27 |  | peano2cn |  |-  ( D e. CC -> ( D + 1 ) e. CC ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. CC ) | 
						
							| 29 | 28 | sqsqrtd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) = ( D + 1 ) ) | 
						
							| 30 | 23 25 29 | 3brtr4d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) ) | 
						
							| 31 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 32 | 31 | a1i |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ 1 ) | 
						
							| 33 | 9 | rpge0d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` ( D + 1 ) ) ) | 
						
							| 34 | 17 10 32 33 | lt2sqd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 < ( sqrt ` ( D + 1 ) ) <-> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) ) ) | 
						
							| 35 | 30 34 | mpbird |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( sqrt ` ( D + 1 ) ) ) | 
						
							| 36 | 26 | sqsqrtd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 37 | 21 25 36 | 3brtr4d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) | 
						
							| 38 | 11 | rpge0d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` D ) ) | 
						
							| 39 | 17 12 32 38 | le2sqd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 <_ ( sqrt ` D ) <-> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) ) | 
						
							| 40 | 37 39 | mpbird |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ ( sqrt ` D ) ) | 
						
							| 41 | 17 17 10 12 35 40 | ltleaddd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 + 1 ) < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) | 
						
							| 42 | 16 41 | eqbrtrid |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) | 
						
							| 43 |  | pell14qrgap |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) | 
						
							| 44 | 2 13 15 42 43 | ltletrd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < A ) |