Metamath Proof Explorer


Theorem pell14qrgapw

Description: Positive Pell solutions are bounded away from 1, with a friendlier bound. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrgapw
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < A )

Proof

Step Hyp Ref Expression
1 2re
 |-  2 e. RR
2 1 a1i
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 e. RR )
3 eldifi
 |-  ( D e. ( NN \ []NN ) -> D e. NN )
4 3 3ad2ant1
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. NN )
5 4 nnrpd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR+ )
6 1rp
 |-  1 e. RR+
7 6 a1i
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR+ )
8 5 7 rpaddcld
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR+ )
9 8 rpsqrtcld
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR+ )
10 9 rpred
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` ( D + 1 ) ) e. RR )
11 5 rpsqrtcld
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR+ )
12 11 rpred
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( sqrt ` D ) e. RR )
13 10 12 readdcld
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR )
14 pell14qrre
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR )
15 14 3adant3
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. RR )
16 df-2
 |-  2 = ( 1 + 1 )
17 1red
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 e. RR )
18 4 nnred
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. RR )
19 peano2re
 |-  ( D e. RR -> ( D + 1 ) e. RR )
20 18 19 syl
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. RR )
21 4 nnge1d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ D )
22 18 ltp1d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D < ( D + 1 ) )
23 17 18 20 21 22 lelttrd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( D + 1 ) )
24 sq1
 |-  ( 1 ^ 2 ) = 1
25 24 a1i
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) = 1 )
26 4 nncnd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> D e. CC )
27 peano2cn
 |-  ( D e. CC -> ( D + 1 ) e. CC )
28 26 27 syl
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( D + 1 ) e. CC )
29 28 sqsqrtd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) ^ 2 ) = ( D + 1 ) )
30 23 25 29 3brtr4d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) )
31 0le1
 |-  0 <_ 1
32 31 a1i
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ 1 )
33 9 rpge0d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` ( D + 1 ) ) )
34 17 10 32 33 lt2sqd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 < ( sqrt ` ( D + 1 ) ) <-> ( 1 ^ 2 ) < ( ( sqrt ` ( D + 1 ) ) ^ 2 ) ) )
35 30 34 mpbird
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 < ( sqrt ` ( D + 1 ) ) )
36 26 sqsqrtd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` D ) ^ 2 ) = D )
37 21 25 36 3brtr4d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) )
38 11 rpge0d
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 0 <_ ( sqrt ` D ) )
39 17 12 32 38 le2sqd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 <_ ( sqrt ` D ) <-> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) )
40 37 39 mpbird
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ ( sqrt ` D ) )
41 17 17 10 12 35 40 ltleaddd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( 1 + 1 ) < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) )
42 16 41 eqbrtrid
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) )
43 pell14qrgap
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A )
44 2 13 15 42 43 ltletrd
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 2 < A )