| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell1qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 4 | 3 | ad4antr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℕ ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) ) | 
						
							| 6 |  | simp-4r | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  <  𝐴 ) | 
						
							| 7 |  | simprl | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 8 | 6 7 | breqtrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  1  <  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 10 |  | pell1qrgaplem | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 11 | 4 5 8 9 10 | syl22anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 12 | 11 7 | breqtrrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) | 
						
							| 13 | 12 | ex | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) | 
						
							| 14 | 13 | rexlimdvva | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) | 
						
							| 15 | 14 | expimpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) | 
						
							| 16 | 2 15 | sylbid | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  1  <  𝐴 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 1  <  𝐴  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) ) | 
						
							| 18 | 17 | com23 | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  →  ( 1  <  𝐴  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) ) ) | 
						
							| 19 | 18 | 3imp | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∧  1  <  𝐴 )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  𝐴 ) |