Metamath Proof Explorer


Theorem pell1qrgap

Description: First-quadrant Pell solutions are bounded away from 1. (This particular bound allows to prove exact values for the fundamental solution later.) (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell1qrgap DAPell1QRD1<AD+1+DA

Proof

Step Hyp Ref Expression
1 elpell1qr DAPell1QRDAa0b0A=a+Dba2Db2=1
2 1 adantr D1<AAPell1QRDAa0b0A=a+Dba2Db2=1
3 eldifi DD
4 3 ad4antr D1<AAa0b0A=a+Dba2Db2=1D
5 simplr D1<AAa0b0A=a+Dba2Db2=1a0b0
6 simp-4r D1<AAa0b0A=a+Dba2Db2=11<A
7 simprl D1<AAa0b0A=a+Dba2Db2=1A=a+Db
8 6 7 breqtrd D1<AAa0b0A=a+Dba2Db2=11<a+Db
9 simprr D1<AAa0b0A=a+Dba2Db2=1a2Db2=1
10 pell1qrgaplem Da0b01<a+Dba2Db2=1D+1+Da+Db
11 4 5 8 9 10 syl22anc D1<AAa0b0A=a+Dba2Db2=1D+1+Da+Db
12 11 7 breqtrrd D1<AAa0b0A=a+Dba2Db2=1D+1+DA
13 12 ex D1<AAa0b0A=a+Dba2Db2=1D+1+DA
14 13 rexlimdvva D1<AAa0b0A=a+Dba2Db2=1D+1+DA
15 14 expimpd D1<AAa0b0A=a+Dba2Db2=1D+1+DA
16 2 15 sylbid D1<AAPell1QRDD+1+DA
17 16 ex D1<AAPell1QRDD+1+DA
18 17 com23 DAPell1QRD1<AD+1+DA
19 18 3imp DAPell1QRD1<AD+1+DA