| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnrp | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℝ+ ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℝ+ ) | 
						
							| 3 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  ∈  ℝ+ ) | 
						
							| 5 | 2 4 | rpaddcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  +  1 )  ∈  ℝ+ ) | 
						
							| 6 | 5 | rpsqrtcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ+ ) | 
						
							| 7 | 6 | rpred | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ ( 𝐷  +  1 ) )  ∈  ℝ ) | 
						
							| 8 | 2 | rpsqrtcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 9 | 8 | rpred | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ∈  ℝ ) | 
						
							| 10 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 13 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 9 15 | remulcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  𝐵 )  ∈  ℝ ) | 
						
							| 17 | 2 | rpred | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 18 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  ∈  ℝ ) | 
						
							| 20 | 15 | resqcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 21 | 19 20 | resubcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1  −  ( 𝐵 ↑ 2 ) )  ∈  ℝ ) | 
						
							| 22 | 17 21 | remulcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) )  ∈  ℝ ) | 
						
							| 23 |  | 0red | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  0  ∈  ℝ ) | 
						
							| 24 | 17 23 | remulcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  0 )  ∈  ℝ ) | 
						
							| 25 | 12 | resqcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 26 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1 ↑ 2 )  =  1 ) | 
						
							| 28 |  | nnge1 | ⊢ ( 𝐵  ∈  ℕ  →  1  ≤  𝐵 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  ∈  ℕ )  →  1  ≤  𝐵 ) | 
						
							| 30 |  | simplrl | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵 ↑ 2 )  =  ( 0 ↑ 2 ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐵 ↑ 2 )  =  ( 0 ↑ 2 ) ) | 
						
							| 33 |  | sq0 | ⊢ ( 0 ↑ 2 )  =  0 | 
						
							| 34 | 32 33 | eqtrdi | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐵 ↑ 2 )  =  0 ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  =  ( 𝐷  ·  0 ) ) | 
						
							| 36 | 2 | rpcnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  𝐷  ∈  ℂ ) | 
						
							| 38 | 37 | mul01d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐷  ·  0 )  =  0 ) | 
						
							| 39 | 35 38 | eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  =  0 ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  −  0 ) ) | 
						
							| 41 |  | simplrr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) | 
						
							| 42 | 12 | recnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 43 | 42 | sqcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 45 | 44 | subid1d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( 𝐴 ↑ 2 )  −  0 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 46 | 40 41 45 | 3eqtr3d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  1  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 47 | 26 46 | eqtr2id | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐴 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 48 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  0  ≤  𝐴 ) | 
						
							| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  0  ≤  𝐴 ) | 
						
							| 51 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 52 | 51 | a1i | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  0  ≤  1 ) | 
						
							| 53 |  | sq11 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 1  ∈  ℝ  ∧  0  ≤  1 ) )  →  ( ( 𝐴 ↑ 2 )  =  ( 1 ↑ 2 )  ↔  𝐴  =  1 ) ) | 
						
							| 54 | 12 50 19 52 53 | syl22anc | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  =  ( 1 ↑ 2 )  ↔  𝐴  =  1 ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( 𝐴 ↑ 2 )  =  ( 1 ↑ 2 )  ↔  𝐴  =  1 ) ) | 
						
							| 56 | 47 55 | mpbid | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  𝐴  =  1 ) | 
						
							| 57 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  𝐵  =  0 ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( √ ‘ 𝐷 )  ·  𝐵 )  =  ( ( √ ‘ 𝐷 )  ·  0 ) ) | 
						
							| 59 | 8 | rpcnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 61 | 60 | mul01d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( √ ‘ 𝐷 )  ·  0 )  =  0 ) | 
						
							| 62 | 58 61 | eqtrd | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( ( √ ‘ 𝐷 )  ·  𝐵 )  =  0 ) | 
						
							| 63 | 56 62 | oveq12d | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  ( 1  +  0 ) ) | 
						
							| 64 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 65 | 63 64 | eqtrdi | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  =  1 ) | 
						
							| 66 | 30 65 | breqtrd | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  1  <  1 ) | 
						
							| 67 | 18 | ltnri | ⊢ ¬  1  <  1 | 
						
							| 68 |  | pm2.24 | ⊢ ( 1  <  1  →  ( ¬  1  <  1  →  1  ≤  𝐵 ) ) | 
						
							| 69 | 66 67 68 | mpisyl | ⊢ ( ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  ∧  𝐵  =  0 )  →  1  ≤  𝐵 ) | 
						
							| 70 |  | simplrr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐵  ∈  ℕ0 ) | 
						
							| 71 |  | elnn0 | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) ) | 
						
							| 72 | 70 71 | sylib | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) ) | 
						
							| 73 | 29 69 72 | mpjaodan | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  ≤  𝐵 ) | 
						
							| 74 |  | nn0ge0 | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  𝐵 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  0  ≤  𝐵 ) | 
						
							| 76 | 75 | ad2antlr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  0  ≤  𝐵 ) | 
						
							| 77 | 19 15 52 76 | le2sqd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1  ≤  𝐵  ↔  ( 1 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 78 | 73 77 | mpbid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1 ↑ 2 )  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 79 | 27 78 | eqbrtrrd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 80 | 19 20 | suble0d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 1  −  ( 𝐵 ↑ 2 ) )  ≤  0  ↔  1  ≤  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 81 | 79 80 | mpbird | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1  −  ( 𝐵 ↑ 2 ) )  ≤  0 ) | 
						
							| 82 | 21 23 2 | lemul2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 1  −  ( 𝐵 ↑ 2 ) )  ≤  0  ↔  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) )  ≤  ( 𝐷  ·  0 ) ) ) | 
						
							| 83 | 81 82 | mpbid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) )  ≤  ( 𝐷  ·  0 ) ) | 
						
							| 84 | 22 24 25 83 | leadd2dd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) ) )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  0 ) ) ) | 
						
							| 85 | 5 | rpcnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  +  1 )  ∈  ℂ ) | 
						
							| 86 | 85 | sqsqrtd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 )  =  ( 𝐷  +  1 ) ) | 
						
							| 87 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) | 
						
							| 88 | 87 | eqcomd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  =  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 89 | 88 | oveq2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  +  1 )  =  ( 𝐷  +  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 90 | 15 | recnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 91 | 90 | sqcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 92 | 36 91 | mulcld | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 93 | 36 43 92 | addsub12d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  +  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 94 | 19 | recnd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  1  ∈  ℂ ) | 
						
							| 95 | 36 94 91 | subdid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) )  =  ( ( 𝐷  ·  1 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 96 | 36 | mulridd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  1 )  =  𝐷 ) | 
						
							| 97 | 96 | oveq1d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐷  ·  1 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  ( 𝐷  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 98 | 95 97 | eqtr2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 100 | 93 99 | eqtrd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  +  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 101 | 86 89 100 | 3eqtrd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  ( 1  −  ( 𝐵 ↑ 2 ) ) ) ) ) | 
						
							| 102 | 36 | mul01d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐷  ·  0 )  =  0 ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  0 ) )  =  ( ( 𝐴 ↑ 2 )  +  0 ) ) | 
						
							| 104 | 43 | addridd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝐴 ↑ 2 )  +  0 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 105 | 103 104 | eqtr2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴 ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐷  ·  0 ) ) ) | 
						
							| 106 | 84 101 105 | 3brtr4d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 )  ≤  ( 𝐴 ↑ 2 ) ) | 
						
							| 107 | 6 | rpge0d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  0  ≤  ( √ ‘ ( 𝐷  +  1 ) ) ) | 
						
							| 108 | 7 12 107 50 | le2sqd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  ≤  𝐴  ↔  ( ( √ ‘ ( 𝐷  +  1 ) ) ↑ 2 )  ≤  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 109 | 106 108 | mpbird | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ ( 𝐷  +  1 ) )  ≤  𝐴 ) | 
						
							| 110 | 59 | mulridd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  1 )  =  ( √ ‘ 𝐷 ) ) | 
						
							| 111 | 19 15 8 | lemul2d | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( 1  ≤  𝐵  ↔  ( ( √ ‘ 𝐷 )  ·  1 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) | 
						
							| 112 | 73 111 | mpbid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ 𝐷 )  ·  1 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) | 
						
							| 113 | 110 112 | eqbrtrrd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( √ ‘ 𝐷 )  ≤  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) | 
						
							| 114 | 7 9 12 16 109 113 | le2addd | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 ) )  ∧  ( 1  <  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) )  ∧  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  1 ) )  →  ( ( √ ‘ ( 𝐷  +  1 ) )  +  ( √ ‘ 𝐷 ) )  ≤  ( 𝐴  +  ( ( √ ‘ 𝐷 )  ·  𝐵 ) ) ) |