Metamath Proof Explorer


Theorem pell14qrdich

Description: A positive Pell solution is either in the first quadrant, or its reciprocal is. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrdich ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 elpell14qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
2 1 biimpa ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
3 simplrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝑏 ∈ ℤ )
4 elznn0 ( 𝑏 ∈ ℤ ↔ ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) )
5 3 4 sylib ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) ) )
6 5 simprd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) )
7 simplr ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → 𝐴 ∈ ℝ )
8 7 ad2antrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ )
9 simprl ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℕ0 )
10 9 ad2antrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 )
11 simpr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℕ0 )
12 simplr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) )
13 rsp2e ( ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) )
14 10 11 12 13 syl3anc ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) )
15 8 14 jca ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) )
16 15 ex ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
17 elpell1qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
18 17 ad4antr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ) )
19 16 18 sylibrd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑏 ∈ ℕ0𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ) )
20 7 ad2antrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ )
21 pell14qrne0 ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ≠ 0 )
22 21 ad4antr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝐴 ≠ 0 )
23 20 22 rereccld ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 1 / 𝐴 ) ∈ ℝ )
24 9 ad2antrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝑎 ∈ ℕ0 )
25 simpr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → - 𝑏 ∈ ℕ0 )
26 pell14qrre ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℝ )
27 26 recnd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → 𝐴 ∈ ℂ )
28 27 21 reccld ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 1 / 𝐴 ) ∈ ℂ )
29 28 ad3antrrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 1 / 𝐴 ) ∈ ℂ )
30 nn0cn ( 𝑎 ∈ ℕ0𝑎 ∈ ℂ )
31 30 ad2antrl ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → 𝑎 ∈ ℂ )
32 eldifi ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℕ )
33 32 nncnd ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → 𝐷 ∈ ℂ )
34 33 ad3antrrr ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → 𝐷 ∈ ℂ )
35 34 sqrtcld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( √ ‘ 𝐷 ) ∈ ℂ )
36 zcn ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ )
37 36 ad2antll ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → 𝑏 ∈ ℂ )
38 37 negcld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → - 𝑏 ∈ ℂ )
39 35 38 mulcld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · - 𝑏 ) ∈ ℂ )
40 31 39 addcld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∈ ℂ )
41 40 adantr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∈ ℂ )
42 27 ad3antrrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ∈ ℂ )
43 21 ad3antrrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → 𝐴 ≠ 0 )
44 27 21 recidd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 )
45 44 ad3antrrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 )
46 simprr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 )
47 45 46 eqtr4d ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) )
48 31 adantr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → 𝑎 ∈ ℂ )
49 35 37 mulcld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ )
50 49 adantr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ )
51 subsq ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) )
52 48 50 51 syl2anc ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) )
53 35 37 sqmuld ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) = ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) )
54 34 sqsqrtd ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) ↑ 2 ) = 𝐷 )
55 54 oveq1d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( ( √ ‘ 𝐷 ) ↑ 2 ) · ( 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) )
56 53 55 eqtr2d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( 𝐷 · ( 𝑏 ↑ 2 ) ) = ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) )
57 56 oveq2d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) )
58 57 adantr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( ( ( √ ‘ 𝐷 ) · 𝑏 ) ↑ 2 ) ) )
59 simpr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
60 35 37 mulneg2d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( √ ‘ 𝐷 ) · - 𝑏 ) = - ( ( √ ‘ 𝐷 ) · 𝑏 ) )
61 60 oveq2d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
62 negsub ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
63 62 eqcomd ( ( 𝑎 ∈ ℂ ∧ ( ( √ ‘ 𝐷 ) · 𝑏 ) ∈ ℂ ) → ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
64 31 49 63 syl2anc ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) = ( 𝑎 + - ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
65 61 64 eqtr4d ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
66 65 adantr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) = ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) )
67 59 66 oveq12d ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) = ( ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) · ( 𝑎 − ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) )
68 52 58 67 3eqtr4d ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) )
69 68 adantrr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) )
70 47 69 eqtrd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 · ( 1 / 𝐴 ) ) = ( 𝐴 · ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) )
71 29 41 42 43 70 mulcanad ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) )
72 71 adantr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) )
73 37 ad2antrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → 𝑏 ∈ ℂ )
74 sqneg ( 𝑏 ∈ ℂ → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) )
75 73 74 syl ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( - 𝑏 ↑ 2 ) = ( 𝑏 ↑ 2 ) )
76 75 oveq2d ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( 𝐷 · ( - 𝑏 ↑ 2 ) ) = ( 𝐷 · ( 𝑏 ↑ 2 ) ) )
77 76 oveq2d ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) )
78 simplrr ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 )
79 77 78 eqtrd ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 )
80 72 79 jca ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) )
81 oveq2 ( 𝑐 = - 𝑏 → ( ( √ ‘ 𝐷 ) · 𝑐 ) = ( ( √ ‘ 𝐷 ) · - 𝑏 ) )
82 81 oveq2d ( 𝑐 = - 𝑏 → ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) )
83 82 eqeq2d ( 𝑐 = - 𝑏 → ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ↔ ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ) )
84 oveq1 ( 𝑐 = - 𝑏 → ( 𝑐 ↑ 2 ) = ( - 𝑏 ↑ 2 ) )
85 84 oveq2d ( 𝑐 = - 𝑏 → ( 𝐷 · ( 𝑐 ↑ 2 ) ) = ( 𝐷 · ( - 𝑏 ↑ 2 ) ) )
86 85 oveq2d ( 𝑐 = - 𝑏 → ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) )
87 86 eqeq1d ( 𝑐 = - 𝑏 → ( ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ↔ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) )
88 83 87 anbi12d ( 𝑐 = - 𝑏 → ( ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ↔ ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) )
89 88 rspcev ( ( - 𝑏 ∈ ℕ0 ∧ ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · - 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( - 𝑏 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) )
90 25 80 89 syl2anc ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) )
91 rspe ( ( 𝑎 ∈ ℕ0 ∧ ∃ 𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) → ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) )
92 24 90 91 syl2anc ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) )
93 23 92 jca ( ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) ∧ - 𝑏 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) )
94 93 ex ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( - 𝑏 ∈ ℕ0 → ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
95 elpell1qr ( 𝐷 ∈ ( ℕ ∖ ◻NN ) → ( ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
96 95 ad4antr ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ↔ ( ( 1 / 𝐴 ) ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑐 ∈ ℕ0 ( ( 1 / 𝐴 ) = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑐 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑐 ↑ 2 ) ) ) = 1 ) ) ) )
97 94 96 sylibrd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( - 𝑏 ∈ ℕ0 → ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )
98 19 97 orim12d ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( ( 𝑏 ∈ ℕ0 ∨ - 𝑏 ∈ ℕ0 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
99 6 98 mpd ( ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) ∧ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )
100 99 ex ( ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℤ ) ) → ( ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
101 100 rexlimdvva ( ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) ∧ 𝐴 ∈ ℝ ) → ( ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
102 101 expimpd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( ( 𝐴 ∈ ℝ ∧ ∃ 𝑎 ∈ ℕ0𝑏 ∈ ℤ ( 𝐴 = ( 𝑎 + ( ( √ ‘ 𝐷 ) · 𝑏 ) ) ∧ ( ( 𝑎 ↑ 2 ) − ( 𝐷 · ( 𝑏 ↑ 2 ) ) ) = 1 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) ) )
103 2 102 mpd ( ( 𝐷 ∈ ( ℕ ∖ ◻NN ) ∧ 𝐴 ∈ ( Pell14QR ‘ 𝐷 ) ) → ( 𝐴 ∈ ( Pell1QR ‘ 𝐷 ) ∨ ( 1 / 𝐴 ) ∈ ( Pell1QR ‘ 𝐷 ) ) )