| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpell14qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell14QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 2 | 1 | biimpa | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 3 |  | simplrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝑏  ∈  ℤ ) | 
						
							| 4 |  | elznn0 | ⊢ ( 𝑏  ∈  ℤ  ↔  ( 𝑏  ∈  ℝ  ∧  ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 5 | 3 4 | sylib | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑏  ∈  ℝ  ∧  ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 6 | 5 | simprd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 ) ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  𝑎  ∈  ℕ0 ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 12 |  | simplr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 13 |  | rsp2e | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 15 | 8 14 | jca | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  𝑏  ∈  ℕ0 )  →  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 16 | 15 | ex | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑏  ∈  ℕ0  →  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 17 |  | elpell1qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 18 | 17 | ad4antr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 19 | 16 18 | sylibrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑏  ∈  ℕ0  →  𝐴  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 20 | 7 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 21 |  | pell14qrne0 | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ≠  0 ) | 
						
							| 22 | 21 | ad4antr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  𝐴  ≠  0 ) | 
						
							| 23 | 20 22 | rereccld | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 24 | 9 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  - 𝑏  ∈  ℕ0 ) | 
						
							| 26 |  | pell14qrre | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 27 | 26 | recnd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 28 | 27 21 | reccld | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 30 |  | nn0cn | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℂ ) | 
						
							| 31 | 30 | ad2antrl | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  𝑎  ∈  ℂ ) | 
						
							| 32 |  | eldifi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℕ ) | 
						
							| 33 | 32 | nncnd | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  𝐷  ∈  ℂ ) | 
						
							| 34 | 33 | ad3antrrr | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  𝐷  ∈  ℂ ) | 
						
							| 35 | 34 | sqrtcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( √ ‘ 𝐷 )  ∈  ℂ ) | 
						
							| 36 |  | zcn | ⊢ ( 𝑏  ∈  ℤ  →  𝑏  ∈  ℂ ) | 
						
							| 37 | 36 | ad2antll | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  𝑏  ∈  ℂ ) | 
						
							| 38 | 37 | negcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  - 𝑏  ∈  ℂ ) | 
						
							| 39 | 35 38 | mulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( √ ‘ 𝐷 )  ·  - 𝑏 )  ∈  ℂ ) | 
						
							| 40 | 31 39 | addcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∈  ℂ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∈  ℂ ) | 
						
							| 42 | 27 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 43 | 21 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  𝐴  ≠  0 ) | 
						
							| 44 | 27 21 | recidd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  1 ) | 
						
							| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  1 ) | 
						
							| 46 |  | simprr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 47 | 45 46 | eqtr4d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 48 | 31 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  𝑎  ∈  ℂ ) | 
						
							| 49 | 35 37 | mulcld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ ) | 
						
							| 51 |  | subsq | ⊢ ( ( 𝑎  ∈  ℂ  ∧  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 52 | 48 50 51 | syl2anc | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 53 | 35 37 | sqmuld | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 )  =  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 54 | 34 | sqsqrtd | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( √ ‘ 𝐷 ) ↑ 2 )  =  𝐷 ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( ( √ ‘ 𝐷 ) ↑ 2 )  ·  ( 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 56 | 53 55 | eqtr2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝐷  ·  ( 𝑏 ↑ 2 ) )  =  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) | 
						
							| 57 | 56 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( ( ( √ ‘ 𝐷 )  ·  𝑏 ) ↑ 2 ) ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 60 | 35 37 | mulneg2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( √ ‘ 𝐷 )  ·  - 𝑏 )  =  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  =  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 62 |  | negsub | ⊢ ( ( 𝑎  ∈  ℂ  ∧  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ )  →  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 63 | 62 | eqcomd | ⊢ ( ( 𝑎  ∈  ℂ  ∧  ( ( √ ‘ 𝐷 )  ·  𝑏 )  ∈  ℂ )  →  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 64 | 31 49 63 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  =  ( 𝑎  +  - ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 65 | 61 64 | eqtr4d | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  =  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  =  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) | 
						
							| 67 | 59 66 | oveq12d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) )  =  ( ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ·  ( 𝑎  −  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) ) ) | 
						
							| 68 | 52 58 67 | 3eqtr4d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 69 | 68 | adantrr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 70 | 47 69 | eqtrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ·  ( 1  /  𝐴 ) )  =  ( 𝐴  ·  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 71 | 29 41 42 43 70 | mulcanad | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 73 | 37 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  𝑏  ∈  ℂ ) | 
						
							| 74 |  | sqneg | ⊢ ( 𝑏  ∈  ℂ  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 75 | 73 74 | syl | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) )  =  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 77 | 76 | oveq2d | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 78 |  | simplrr | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 79 | 77 78 | eqtrd | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) | 
						
							| 80 | 72 79 | jca | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑐  =  - 𝑏  →  ( ( √ ‘ 𝐷 )  ·  𝑐 )  =  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( 𝑐  =  - 𝑏  →  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) | 
						
							| 83 | 82 | eqeq2d | ⊢ ( 𝑐  =  - 𝑏  →  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ↔  ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) ) ) ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑐  =  - 𝑏  →  ( 𝑐 ↑ 2 )  =  ( - 𝑏 ↑ 2 ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝑐  =  - 𝑏  →  ( 𝐷  ·  ( 𝑐 ↑ 2 ) )  =  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝑐  =  - 𝑏  →  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) ) ) | 
						
							| 87 | 86 | eqeq1d | ⊢ ( 𝑐  =  - 𝑏  →  ( ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1  ↔  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 88 | 83 87 | anbi12d | ⊢ ( 𝑐  =  - 𝑏  →  ( ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 )  ↔  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 89 | 88 | rspcev | ⊢ ( ( - 𝑏  ∈  ℕ0  ∧  ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  - 𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( - 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 90 | 25 80 89 | syl2anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 91 |  | rspe | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 92 | 24 90 91 | syl2anc | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) | 
						
							| 93 | 23 92 | jca | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  ∧  - 𝑏  ∈  ℕ0 )  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑏  ∈  ℕ0  →  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 95 |  | elpell1qr | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 96 | 95 | ad4antr | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 )  ↔  ( ( 1  /  𝐴 )  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑐  ∈  ℕ0 ( ( 1  /  𝐴 )  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑐 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑐 ↑ 2 ) ) )  =  1 ) ) ) ) | 
						
							| 97 | 94 96 | sylibrd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( - 𝑏  ∈  ℕ0  →  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 98 | 19 97 | orim12d | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) ) | 
						
							| 99 | 6 98 | mpd | ⊢ ( ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  ∧  ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) | 
						
							| 100 | 99 | ex | ⊢ ( ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) ) | 
						
							| 101 | 100 | rexlimdvva | ⊢ ( ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  ∧  𝐴  ∈  ℝ )  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) ) | 
						
							| 102 | 101 | expimpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( ( 𝐴  ∈  ℝ  ∧  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ ( 𝐴  =  ( 𝑎  +  ( ( √ ‘ 𝐷 )  ·  𝑏 ) )  ∧  ( ( 𝑎 ↑ 2 )  −  ( 𝐷  ·  ( 𝑏 ↑ 2 ) ) )  =  1 ) )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) ) | 
						
							| 103 | 2 102 | mpd | ⊢ ( ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  ∧  𝐴  ∈  ( Pell14QR ‘ 𝐷 ) )  →  ( 𝐴  ∈  ( Pell1QR ‘ 𝐷 )  ∨  ( 1  /  𝐴 )  ∈  ( Pell1QR ‘ 𝐷 ) ) ) |