| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpell1234qr |
|
| 2 |
|
simp-4r |
|
| 3 |
|
oveq1 |
|
| 4 |
3
|
eqeq2d |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
oveq1d |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
4 7
|
anbi12d |
|
| 9 |
8
|
rexbidv |
|
| 10 |
9
|
rspcev |
|
| 11 |
10
|
adantll |
|
| 12 |
|
elpell14qr |
|
| 13 |
12
|
ad4antr |
|
| 14 |
2 11 13
|
mpbir2and |
|
| 15 |
14
|
orcd |
|
| 16 |
15
|
exp31 |
|
| 17 |
|
simp-5r |
|
| 18 |
17
|
renegcld |
|
| 19 |
|
simpllr |
|
| 20 |
|
znegcl |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
|
simprl |
|
| 23 |
22
|
negeqd |
|
| 24 |
|
zcn |
|
| 25 |
24
|
ad4antlr |
|
| 26 |
|
eldifi |
|
| 27 |
26
|
nncnd |
|
| 28 |
27
|
ad5antr |
|
| 29 |
28
|
sqrtcld |
|
| 30 |
|
zcn |
|
| 31 |
30
|
ad2antlr |
|
| 32 |
29 31
|
mulcld |
|
| 33 |
25 32
|
negdid |
|
| 34 |
|
mulneg2 |
|
| 35 |
34
|
eqcomd |
|
| 36 |
29 31 35
|
syl2anc |
|
| 37 |
36
|
oveq2d |
|
| 38 |
23 33 37
|
3eqtrd |
|
| 39 |
|
sqneg |
|
| 40 |
25 39
|
syl |
|
| 41 |
|
sqneg |
|
| 42 |
31 41
|
syl |
|
| 43 |
42
|
oveq2d |
|
| 44 |
40 43
|
oveq12d |
|
| 45 |
|
simprr |
|
| 46 |
44 45
|
eqtrd |
|
| 47 |
|
oveq1 |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
oveq1d |
|
| 51 |
50
|
eqeq1d |
|
| 52 |
48 51
|
anbi12d |
|
| 53 |
|
oveq2 |
|
| 54 |
53
|
oveq2d |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
|
oveq1 |
|
| 57 |
56
|
oveq2d |
|
| 58 |
57
|
oveq2d |
|
| 59 |
58
|
eqeq1d |
|
| 60 |
55 59
|
anbi12d |
|
| 61 |
52 60
|
rspc2ev |
|
| 62 |
19 21 38 46 61
|
syl112anc |
|
| 63 |
|
elpell14qr |
|
| 64 |
63
|
ad5antr |
|
| 65 |
18 62 64
|
mpbir2and |
|
| 66 |
65
|
olcd |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
rexlimdva |
|
| 69 |
68
|
ex |
|
| 70 |
|
elznn0 |
|
| 71 |
70
|
simprbi |
|
| 72 |
71
|
adantl |
|
| 73 |
16 69 72
|
mpjaod |
|
| 74 |
73
|
rexlimdva |
|
| 75 |
74
|
expimpd |
|
| 76 |
1 75
|
sylbid |
|
| 77 |
76
|
imp |
|