| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nnord | 
							⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							nordeq | 
							⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐴  ≠  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							disjsn2 | 
							⊢ ( 𝐴  ≠  𝐵  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							undif4 | 
							⊢ ( ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅  →  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  ( ( { 𝐴 }  ∪  𝐴 )  ∖  { 𝐵 } ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-suc | 
							⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } )  | 
						
						
							| 8 | 
							
								7
							 | 
							equncomi | 
							⊢ suc  𝐴  =  ( { 𝐴 }  ∪  𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							difeq1i | 
							⊢ ( suc  𝐴  ∖  { 𝐵 } )  =  ( ( { 𝐴 }  ∪  𝐴 )  ∖  { 𝐵 } )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtr4di | 
							⊢ ( ( { 𝐴 }  ∩  { 𝐵 } )  =  ∅  →  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  ( suc  𝐴  ∖  { 𝐵 } ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( { 𝐴 }  ∪  ( 𝐴  ∖  { 𝐵 } ) )  =  ( suc  𝐴  ∖  { 𝐵 } ) )  |